Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив

Поиск
RSS
Новые поступления






Летняя школа «Современная математика» имени Виталия Арнольда, 2021
28 июля 2021 г. 17:15, Московская область, г. Дубна, дом отдыха «Ратмино»
 


Замощения пространства и сжатие информации. Семинар 2

В. Ю. Протасов

Количество просмотров:
Эта страница:395
Видеофайлы:54
Youtube:

В. Ю. Протасов



Аннотация: Фигуры, называемые тайлами, давно привлекают внимание специалистов в разных областях: комбинаторике, теории чисел, функциональном анализе, алгебре, и т.д. От тайла требуются два свойства: 1) самоподобие: тайл можно без наложений замостить параллельными сдвигами одной фигуры, подобной ему самому; 2) целые сдвиги тайла покрывают без наложений всё пространство. Тайл (tile — «плитка» или «черепица») может иметь самые причудливые формы и фрактальные свойства. Самый известный плоский тайл (помимо квадрата) — это Дракон (или «кривая дракона»), но есть и много других.
Относительно недавно тайлы нашли инженерные применения. Например, для обработки и передачи информации. Представим, что нужно сохранить на компьютере функцию одной или нескольких переменных. Например, звук или изображение. Хранить по точкам — дорого и неэффективно. Гораздо лучше разложить функцию в сумму нескольких базисных функций и хранить только коэффициенты разложения. В течение двух столетий мир довольствовался для этих целей системой Фурье, состоящей из синусов и косинусов. Но с развитием технологий проявились её неустранимые недостатки. Выход был найден в построении других базисных систем функций — всплесков, фреймов, и т.д. Математически это оказалось очень непростым делом. Некоторые из новых систем, например, многомерные системы Хаара, строятся с помощью тайлов. Оказывается, что эти замысловатые фигуры с рваными краями и дробной размерностью можно использовать для приближения гладких функций и, как следствие, для сжатия информации. Как это получается, и почему именно их надо использовать — мы разберемся. А кроме того, докажем ряд фундаментальных свойств тайлов и применим их к теории обработки сигналов и теории приближений. Мы рассмотрим трудную задачу классификации тайлов, построим примеры и сформулируем ряд открытых проблем.

Website: https://mccme.ru/dubna/2021/courses/protasov.html
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025