Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Дни анализа в Сириусе
28 октября 2021 г. 16:55–18:30, Open Problem Session “Open questions of multivariable complex analysis.”, г. Сочи
 


Dimension conjecture: in search of symmetry

M. A. Stepanova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Количество просмотров:
Эта страница:109

Аннотация: In two-dimensional complex space there is the alternative: either the Lie algebra of infinitesimal holomorphic automorphisms of the germ of a CR manifold has infinite dimension, or its dimension does not exceed eight, and the maximum is attained at the three-dimensional sphere $v=|z|^2$. For a long time the following question in CR geometry was open: is it true that the most symmetrical objects are the generalizations of the sphere to higher CR dimensions and codimensions — nondegenerate model surfaces? Recently, it was discovered that the answer is negative: explicit counterexamples were found. For any CR type $(n,k)$ with the condition $k>1$ and for any (arbitrarily large) number $m$ there exist a germ of a manifold of type $(n,k)$, which have a finite dimensional automorphisms algebra of dimension greater than $m$. We will discuss, how to correct the formulation of the dimension conjecture, and state some unsolved problems.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024