Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив

Поиск
RSS
Новые поступления






Международная конференция "Advances in Algebra and Applications"
24 июня 2022 г. 11:20–12:10, г. Минск
 


The Schur–Sato theory for quasi-elliptic rings and some of its applications

A. B. Zheglov

Lomonosov Moscow State University
Дополнительные материалы:
Adobe PDF 301.2 Kb

Количество просмотров:
Эта страница:261
Видеофайлы:72
Материалы:48



Аннотация: The notion of quasielliptic rings appeared as a result of an attempt to classify a wide class of commutative rings of operators found in the theory of integrable systems, such as rings of commuting differential, difference, differential-difference, etc. operators. They are contained in a certain non-commutative “universe” ring — a purely algebraic analogue of the ring of pseudodifferential operators on a manifold, and admit (under certain mild restrictions) a convenient algebraic-geometric description. An important algebraic part of this description is the Schur–Sato theory — a generalisation of the well known theory for ordinary differential operators. I'll talk about this theory in dimension n and about some of its unexpected applications related to the generalized Birkhoff decomposition and to the Abhyankar formula.

Дополнительные материалы: Zheglov.pdf (301.2 Kb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025