Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив

Поиск
RSS
Новые поступления






Летняя школа «Современная математика» имени Виталия Арнольда, 2022
29 июля 2022 г. 09:30, Московская область, г. Дубна, дом отдыха «Ратмино»
 


Поверхности, склеенные из полос бумаги, и квадратичные дифференциалы. Лекция

В. А. Тиморин

Количество просмотров:
Эта страница:312
Видеофайлы:62
Youtube:

В. А. Тиморин



Аннотация: Нарисуем на плоскости граф, то есть отметим несколько точек и соединим их непересекающимися простыми кривыми — так называемыми ребрами. Каждому ребру припишем положительное число, называемое длиной ребра (эта длина может не совпадать с длиной в смысле геометрии плоскости). Такой картинке можно сопоставить способ склейки нескольких полос бумаги, причем каждому ребру будет соответствовать полоска, ширина которой совпадает с длиной ребра. В результате склейки получится поверхность, которая, за исключением конечного числа особых точек, несет обычную геометрию евклидовой плоскости. Мы обсудим, как подобные поверхности записывать формулами в терминах $dz^2$ (здесь $z$ — комплексная координата на плоскости).
Для понимания необходимо знать, что такое комплексные числа. Что такое $dz$ и $dz^2$ я объясню, хотя и не очень формально.

Website: https://mccme.ru/dubna/2022/courses/timorin.html
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025