Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Steklov Mathematical Institute Seminar
June 4, 2009 16:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)
 


Differentiation of measurable functions and Whitney–Lusin's type structure theorems

B. Bojarski

Institute of Mathematics of the Polish Academy of Sciences
Video records:
Real Video 237.8 Mb
Windows Media 249.0 Mb
Flash Video 467.7 Mb
MP4 688.9 Mb

Number of views:
This page:984
Video files:315
Youtube:

B. Bojarski
Photo Gallery




Abstract: Given a measurable subset $P\subset\mathbb R^n$ of possitive $n$-measure the notion of $k$-quasismooth functions $f\colon P\to\mathbb R$ is defined, $k\ge 0$, $k$-integer. This class is characterized in terms of approximate $k$-th order total Peano differentiablity at almost every point of $P$. For $k=0$ we obtain the Egorov–Denjoy–Lusin structure theory of measurable functions. The case $k\ge 1$ connects Lusin's theory with H. Whitney's theory of $k$-smooth functions on arbitrary closed subsets of $\mathbb R^n$. Applications to harmonic analysis, singular integrals, potential theory and PDE will be given.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024