|
|
Алгебраическая топология и её приложения. Семинар им. М. М. Постникова
26 мая 2020 г. 16:45–18:20, г. Москва, ГЗ МГУ, ауд. 16-08, вторник, 16:45–18:20
|
|
|
|
|
|
B-жёсткость идеальных почти погореловских многогранников
Н. Ю. Ероховец Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
|
Количество просмотров: |
Эта страница: | 116 |
|
Аннотация:
В торической топологии каждому $n$-мерному комбинаторному простому многограннику $P$ с $m$ гипергранями
сопоставляется $(m+n)$-мерное момент-угол многообразие $Z_P$ с действием компактного тора $T^m$, таким что
пространство орбит $Z_P/T^m$ является геометрической реализацией многогранника $P$. Простой $n$-мерный
многогранник $P$ называется B-жёстким, если любой изоморфизм градуированных колец $H^*(Z_P,\mathbb{Z}) = H^*(Z_Q,\mathbb{Z})$ для простого $n$-мерного многогранника $Q$ влечёт комбинаторную эквивалентность $P=Q$.
Идеальный почти погореловский многогранник – это комбинаторный трёхмерный простой многогранник, который получается срезкой всех бесконечно удалённых вершин идеального многогранника с прямыми двугранными углами в пространстве Лобачевского $L^3$. Такие многогранники – это в точности многогранники, которые получаются из любого, не обязательно простого, трёхмерного многогранника срезкой всех его вершин и всех рёбер нового многогранника, оставшихся от "старых" рёбер. Граница двойственного многогранника является барицентрическим подразбиением границы старого многогранника (а также двойственного к нему).
Мы доказываем, что любой идеальный почти погореловский многогранник является B-жёстким. Этот результат даёт три когомологически жёсткие семейства многообразий над почти погореловскими многогранниками:
момент-угол многообразия, канонические 6-мерные квазиторические многообразия и канонические 3-мерные малые накрытия, возникающие "из линейной модели" в терминологии Дэвиса-Янушкевича. Малые накрытия имеют интересную геометрическую структуру – вне конечного набора плоских торов (отвечающих вершинам) они имеют структуру гиперболического многообразия.
|
|