Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Научный семинар по нелинейным задачам уравнений в частных производных и математической физики
21 февраля 2023 г. 19:00, г. Москва
 


Уравнение Кортевега-де Фриза на многообразии Уленбек

Я. М. Дымарский

Московский физико-технический институт (государственный университет), г. Долгопрудный, Московская обл.



Аннотация: Известно, что уравнение КдФ относительно функция $p=p(x,t)$, периодической по переменной $x$, можно понимать как векторное поле $v(p)=-p''' + 6pp’$.Известно также, что решение $p(x,t)$ уравнения КдФ и соответствующая собственная функция $y(x,t)$ оператора Шредингера с потенциалом $p(x,t)$ связаны уравнением $\dot{y} = -4y'''+ 6 p(x,t) y' + 3 p'(x,t)$. Мы покажем, что это уравнение можно понимать как векторное поле на многообразии Карен Уленбек троек $(p,\lambda,y)$, удовлетворяющих уравнению Шредингера.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025