Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинары отдела математической логики "Теория доказательств" и "Logic Online Seminar"
2 октября 2023 г. 18:30, г. Москва, Zoom
 


General topological frames for polymodal provability logic based on periodic sets of ordinals

L. D. Beklemisheva, Yunsong Wangb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Peking University, Beijing
Видеозаписи:
MP4 190.5 Mb

Количество просмотров:
Эта страница:183
Видеофайлы:54



Аннотация: Although Japaridze's polymodal logic GLP is known to be complete w.r.t. topological semantics, the topologies needed for the completeness proof are highly non-constructive. The question of completeness of GLP w.r.t. natural topologies on ordinals turns out to be dependent on large cardinal axioms of set theory. So, we are lacking a manageable class of models for which GLP is complete.
In this paper we define a natural class of countable general topological frames on ordinals for which GLB is sound and complete. The associated topologies happen to be the same as the ordinal topologies introduced by Thomas Icard. However, the key point is to consider a suitable algebra of subsets of an ordinal closed under the boolean and topological derivative operations. The algebras we define are based on the notion of a periodic set of ordinals generalizing that of an ultimately periodic binary omega-word.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024