Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар теоргруппы ЛФВЭ МФТИ
16 апреля 2025 г. 14:30–16:30, г. Долгопрудный, МФТИ, Лабораторный корпус, комната 403
 


Основная триада в теории Макдональда

А. В. Пополитовabc

a Национальный исследовательский центр "Курчатовский институт", г. Москва
b Московский физико-технический институт (национальный исследовательский университет), Московская облаcть, г. Долгопрудный
c Институт проблем передачи информации РАН

Количество просмотров:
Эта страница:88

Аннотация: Полиномы Макдональда – важнейшие специальные функции в современной математической физике. Тем не менее, доступные определения этих полиномов выглядят несколько искусственными (ad hoc): по сравнению с теми же полиномами Шура их связь с теорией представлений гораздо менее прозрачна. В 2012 году Ноуми и Шираиши предложили рассматривать A_n полиномы Макдональда как частные случаи некоторой одной производящей функции, которая к тому же решает биспектральную задачу Рудженарса. Наше наблюдение состоит в том, что слегка другая специализация функции Ноуми-Шираиши равна третьему объекту – (многомерной) функции Бейкера-Ахиезера (BAF) введенной О.Чалыхом в 2013 году; и эта функция гораздо более явно связана с системами корней. Удивительным образом, с помощью минимального набора дополнительных симметрийных соображений между всеми тремя объектами можно переходить – так что правильно думать, что они образуют триальность или "триаду". В своем докладе я расскажу, как эти три объекта взаимосвязаны, а также о тех задачах, которые представляются ввиду этой взаимосвязи и разрешимыми в ближайшем будущем.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025