Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Общегородской семинар по математической физике им. В. И. Смирнова
1 декабря 2025 г. 16:30, г. Санкт-Петербург, онлайн-конференция zoom
 


A class of anisotropic diffusion-transport equations in non-divergence form

L. Hoang

Department of Mathematics, Texas A&M University



Аннотация: We generalize Einstein’s probabilistic method for the Brownian motion to study compressible fluids in porous media. The multi-dimensional case is considered with general probability distribution functions. By relating the expected displacement per unit time with the velocity of the fluid, we derive an anisotropic diffusion equation in non-divergence form that contains a transport term. Under the Darcy law assumption, a corresponding nonlinear partial differential equations for the density function is obtained. The classical solutions of this equation are studied, and the maximum and strong maximum principles are established. We also obtain exponential decay estimates for the solutions for all time, and particularly, their exponential convergence as time tends to infinity. Our analysis uses some transformations of the Bernstein-Cole–Hopf type which are explicitly constructed even for very general equations of state. Moreover, the Lemma of Growth in time is proved and utilized in order to achieve the above decaying estimates.

This is joint work with Akif Ibragimov (Texas Tech University, and Oil and Gas Institute of the Russian Academy of Science).

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025