Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
28 октября 2004 г. 16:00, г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


Теоретико-числовая турбулентность и статистика больших диаграмм Юнга

В. И. Арнольд

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
Видеозаписи:
Windows Media 298.8 Mb
Flash Video 302.5 Mb
MP4 670.4 Mb

Количество просмотров:
Эта страница:2075
Видеофайлы:1154
Youtube:

В. И. Арнольд
Фотогалерея




Аннотация: Число делителей большого целого числа $n$ растет с ростом $n$ в среднем как его натуральный логарифм, а сумма делителей, считая само число $n$, как $cn$, где $c$ есть значение дзета-функции Римана в точке 2, т.е. квадрат числа $n$, поделенный на 6, что близко к 3/2 (сумма $s$-х степеней делителей – как $n$ в степени $s$ с коэффициентом, равным значению дзета-функции в точке $s+1$) – видимо, первым доказал это Дирихле.
Компьютерные эксперименты показывают, что средний делитель растет (в среднем) как $cn/(\ln n)$, но строго это не доказано, хотя поведение перечисленных часто осциллирующих величин сильно напоминает гидродинамическую турбулентность и исследовалось теми же эмпирическими методами, при помощи которых Колмогоров пришел к своим законам.
В статистике больших диаграмм Юнга (например, числа $Q(n;x,y)$ разбиений натурального числа $n$ на $y$ натуральных слагаемых, наибольшее из которых равно $x$) наблюдается эмпирически странные асимптотики, похожие на закон больших чисел, но не гауссовские (а похожие иногда, например, на закон Планка распределения энергии излучения черного тела по длине волн).
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024