Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Complex Approximations, Orthogonal Polynomials and Applications (CAOPA)
11 апреля 2022 г. 20:00–21:00, г. Москва, online via Zoom at 17:00 GMT (=13:00 EDT=18:00 BST=19:00 CEST=20:00 Msk)
 


Spectral properties of some tridiagonal matrices

A. V. Dyachenko

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow

Количество просмотров:
Эта страница:113

Аннотация: In the talk, we survey a few recent works on spectral properties of tridiagonal matrices — including certain our results. In particular, we compare several viewpoints to generalised Sylvester–Kac matrices, as well as to other matrices whose spectra are “linear” (i.e., spectral points constitute arithmetic progressions). In connection with this question, we present a nice property tridiagonal matrices with zero diagonals, give some examples of Leonard pairs and a certain related algebraic structure. We also briefly touch upon matrices whose spectra are simple and “quadratic”.
The talk is based on a joint work with Mikhail Tyaglov.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024