21 citations to https://www.mathnet.ru/rus/danma207
  1. М. В. Шамолин, “Инварианты однородных динамических систем произвольного нечетного порядка с диссипацией. III. Системы седьмого порядка”, Материалы 6 Международной конференции «Динамические системы и компьютерные науки: теория и приложения» (DYSC 2024). Иркутск, 16–20 сентября 2024 г. Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 238, ВИНИТИ, M., 2025, 69–100  mathnet  crossref; M. V. Shamolin, “Invariants of homogeneous dynamic systems of arbitrary odd order with dissipation. III. Seventh-order systems”, J. Math. Sci. (N. Y.), 291:3 (2025), 400–431  crossref
  2. М. В. Шамолин, “Инварианты однородных динамических систем произвольного нечетного порядка с диссипацией. IV. Системы девятого порядка”, Материалы 6 Международной конференции «Динамические системы и компьютерные науки: теория и приложения» (DYSC 2024). Иркутск, 16–20 сентября 2024 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 239, ВИНИТИ, M., 2025, 62–97  mathnet  crossref; M. V. Shamolin, “Invariants of homogeneous dynamic systems of arbitrary odd order with dissipation. IV. Ninth-order systems”, J. Math. Sci. (N. Y.), 292:3 (2025), 392–427  crossref
  3. М. В. Шамолин, “Инварианты однородных динамических систем произвольного нечетного порядка с диссипацией. V. Общий случай”, Материалы 6 Международной конференции «Динамические системы и компьютерные науки: теория и приложения» (DYSC 2024). Иркутск, 16–20 сентября 2024 г. Часть 3, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 240, ВИНИТИ, M., 2025, 49–89  mathnet  crossref
  4. M. V. Shamolin, “Integrability of Dynamic Equations of Generalized Four-Dimensional Pendulum Motion”, Lobachevskii J Math, 45:8 (2024), 3737  crossref
  5. М. В. Шамолин, “Инварианты однородных динамических систем произвольного нечетного порядка с диссипацией. I. Системы третьего порядка”, Материалы Воронежской международной весенней математической школы «Современные методы краевых задач. Понтрягинские чтения—XXXV», Воронеж, 26-30 апреля 2024 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 236, ВИНИТИ РАН, M., 2024, 72–88  mathnet  crossref
  6. М. В. Шамолин, “Инварианты однородных динамических систем произвольного нечетного порядка с диссипацией. II. Системы пятого порядка”, Материалы Воронежской международной весенней математической школы «Современные методы краевых задач. Понтрягинские чтения—XXXV», Воронеж, 26-30 апреля 2024 г. Часть 3, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 237, ВИНИТИ РАН, M., 2024, 49–75  mathnet  crossref
  7. М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. I. Системы на касательных расслоениях двумерных многообразий”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 227, ВИНИТИ РАН, М., 2023, 100–128  mathnet  crossref
  8. М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. II. Системы на касательных расслоениях трехмерных многообразий”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 228, ВИНИТИ РАН, М., 2023, 92–118  mathnet  crossref
  9. М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. III. Системы на касательных расслоениях четырехмерных многообразий”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 3, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 229, ВИНИТИ РАН, М., 2023, 90–119  mathnet  crossref
  10. М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. IV. Системы на касательных расслоениях $n$-мерных многообразий”, Материалы Воронежской международной весенней математической школы «Современные методы краевых задач. Понтрягинские чтения—XXXIV», Воронеж, 3-9 мая 2023 г. Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 230, ВИНИТИ РАН, М., 2023, 96–130  mathnet  crossref
1
2
3
Следующая