33 citations to https://www.mathnet.ru/rus/smj1079
-
С. А. Назаров, “Лакуны в спектре периодического семейства тел, соединенных тонкими упругими стержнями”, Ж. вычисл. матем. и матем. физ., 65:4 (2025), 494–514
; S. A. Nazarov, “Gaps in the spectrum of a periodic family of bodies connected by this elastic rods”, Comput. Math. Math. Phys., 65:4 (2025), 790–811
-
Charles Dapogny, Florian Feppon, “Shape optimization using a level set based mesh evolution method: an overview and tutorial”, Comptes Rendus. Mathématique, 361:G8 (2023), 1267
-
E. Bonnetier, Charles Dapogny, Michael S. Vogelius, “Small perturbations in the type of boundary conditions for an elliptic operator”, Journal de Mathématiques Pures et Appliquées, 167 (2022), 101
-
S. A. Nazarov, “Abnormal Transmission of Elastic Waves through a Thin Ligament Connecting Two Planar Isotropic Waveguides”, Mech. Solids, 57:8 (2022), 1908
-
Charles Dapogny, “The topological ligament in shape optimization: a connection with thin tubular inhomogeneities”, The SMAI journal of computational mathematics, 7 (2022), 185
-
Kobayashi M.H., Canfield R.A., Kolonay R.M., “On a Cellular Developmental Method For Layout Optimization Via the Two-Point Topological Derivative”, Struct. Multidiscip. Optim., 64:4 (2021), 2343–2360
-
С. А. Назаров, “Волновод с двойным пороговым резонансом на простом пороге”, Матем. сб., 211:8 (2020), 20–67
; S. A. Nazarov, “Waveguide with double threshold resonance at a simple threshold”, Sb. Math., 211:8 (2020), 1080–1126
-
Dapogny Ch., “a Connection Between Topological Ligaments in Shape Optimization and Thin Tubular Inhomogeneities”, C. R. Math., 358:2 (2020), 119–127
-
Chesnel L. Nazarov S.A. Taskinen J., “Surface Waves in a Channel With Thin Tunnels and Wells At the Bottom: Non-Reflecting Underwater Topography”, Asymptotic Anal., 118:1-2 (2020), 81–122
-
Laurain A., “Analyzing Smooth and Singular Domain Perturbations in Level Set Methods”, SIAM J. Math. Anal., 50:4 (2018), 4327–4370