- S Post, P Winternitz, “GeneralNth order integrals of motion in the Euclidean plane”, J. Phys. A: Math. Theor., 48, no. 40, 2015, 405201

- Tomáš Tyc, Aaron J. Danner, “Absolute optical instruments, classical superintegrability, and separability of the Hamilton-Jacobi equation”, Phys. Rev. A, 96, no. 5, 2017, 053838

- A V Tsiganov, “Discretization and superintegrability all rolled into one”, Nonlinearity, 33, no. 9, 2020, 4924

- Maciej Błaszak, Quantum versus Classical Mechanics and Integrability Problems, 2019, 113

- Andrey Vladimirovich Tsiganov, “On rotation invariant integrable systems”, Izv. Math., 88, no. 2, 2024, 389

- E.O. Porubov, A.V. Tsiganov, “On two-dimensional Hamiltonian systems with sixth-order integrals of motion”, Communications in Nonlinear Science and Numerical Simulation, 110, 2022, 106404

- S Bertrand, M C Nucci, “Linearity of minimally superintegrable systems in a static electromagnetic field”, J. Phys. A: Math. Theor., 56, no. 29, 2023, 295201

- R. Campoamor-Stursberg, “Superposition of super-integrable pseudo-Euclidean potentials in N = 2 with a fundamental constant of motion of arbitrary order in the momenta”, Journal of Mathematical Physics, 55, no. 4, 2014, 042904

- A V Tsiganov, “Elliptic curve arithmetic and superintegrable systems”, Phys. Scr., 94, no. 8, 2019, 085207

- Claudia Chanu, Luca Degiovanni, Giovanni Rastelli, “Three and four-body systems in one dimension: Integrability, superintegrability and discrete symmetries”, Regul. Chaot. Dyn., 16, no. 5, 2011, 496
