- Emile E. Anclin, “An upper bound for the number of planar lattice triangulations”, Journal of Combinatorial Theory, Series A, 103, no. 2, 2003, 383

- Pietro Caputo, Fabio Martinelli, Alistair Sinclair, Alexandre Stauffer, “Random lattice triangulations: Structure and algorithms”, Ann. Appl. Probab., 25, no. 3, 2015

- Stepan Yur'evich Orevkov, “Перечисление целочисленных триангуляций: уравнения Фредгольма в комбинаторике”, Математический сборник, 213, no. 11, 2022, 50

- Pietro Caputo, Fabio Martinelli, Alistair Sinclair, Alexandre Stauffer, Proceedings of the forty-fifth annual ACM symposium on Theory of Computing, 2013, 615

- Stepan Yur'evich Orevkov, “Counting lattice triangulations: Fredholm equations in combinatorics”, Sb. Math., 213, no. 11, 2022, 1530

- Emo Welzl, 4372, Graph Drawing, 2007, 1

- S. Yu. Orevkov, V. M. Kharlamov, “Asymptotic Growth of the Number of Classes of Real Plane Algebraic Curves as the Degree Grows”, Journal of Mathematical Sciences, 113, no. 5, 2003, 666
