60 citations to 10.1007/s40315-017-0206-2 (Crossref Cited-By Service)
  1. Akash Meher, Priyabrat Gochhayat, “On Univalent k-Fold Symmetric Logharmonic Mappings”, Complex Anal. Oper. Theory, 18, no. 5, 2024, 113  crossref
  2. Xiaojun Hu, Boyong Long, “Some Sharp Bohr-Type Inequalities for Analytic Functions”, Bull. Malays. Math. Sci. Soc., 47, no. 5, 2024, 140  crossref
  3. Hidetaka Hamada, Tatsuhiro Honda, “Bohr Phenomena for Holomorphic Mappings with Values in Several Complex Variables”, Results Math, 79, no. 7, 2024, 239  crossref
  4. Vibhuti Arora, M. Vinayak, “Bohr's phenomenon for certain classes of analytic functions”, Complex Variables and Elliptic Equations, 2025, 1  crossref
  5. Xin Wang, Deguang Zhong, “Bohr-Type Inequalities and Landau Type Theorem for K-Quasiregular Harmonic Mappings”, Comput. Methods Funct. Theory, 2025  crossref
  6. Shanshan Jia, Ming-Sheng Liu, Saminathan Ponnusamy, “Multidimensional analogues of the refined versions of Bohr inequalities involving Schwarz mappings”, Anal.Math.Phys., 15, no. 3, 2025, 79  crossref
  7. Ilgiz R. Kayumov, Diana M. Khammatova, Saminathan Ponnusamy, “On the Bohr inequality for the Cesáro operator”, Comptes Rendus. Mathématique, 358, no. 5, 2020, 615  crossref
  8. Molla Basir Ahamed, Partha Pratim Roy, “Improved Bohr inequalities for analytic functions on unit disk”, Proc Math Sci, 135, no. 2, 2025, 31  crossref
  9. Shuhan Xu, Xuhuizi An, Zhihong Liu, “The bohr phenomenon for the differential operators of harmonic stable mappings”, J Anal, 2025  crossref
  10. Vasudevarao Allu, Raju Biswas, Rajib Mandal, “Improved Bohr-type inequalities for the Cesáro operator”, Complex Variables and Elliptic Equations, 2025, 1  crossref
Previous
1
2
3
4
5
6