22 citations to https://www.mathnet.ru/eng/cmph3
  1. Mizanur Rahaman, “A New Bound on Quantum Wielandt Inequality”, IEEE Trans. Inform. Theory, 66:1 (2020), 147  crossref
  2. G. G. Amosov, A. Mokeev, “On errors generated by unitary dynamics of bipartite quantum systems”, Lobachevskii J. Math., 41:12 (2020), 2310–2315  mathnet  crossref  isi  scopus
  3. Xin Wang, Runyao Duan, “Separation Between Quantum Lovász Number and Entanglement-Assisted Zero-Error Classical Capacity”, IEEE Trans. Inform. Theory, 64:3 (2018), 1454  crossref
  4. Jeonghoon Park, Jun Heo, “Activation of zero-error classical capacity in low-dimensional quantum systems”, Phys. Rev. A, 97:6 (2018)  crossref
  5. Rupert H. Levene, Vern I. Paulsen, Ivan G. Todorov, “Complexity and Capacity Bounds for Quantum Channels”, IEEE Trans. Inform. Theory, 64:10 (2018), 6917  crossref
  6. G. G. Amosov, “On general properties of non-commutative operator graphs”, Lobachevskii J. Math., 39:3 (2018), 304–308  mathnet  crossref  isi  scopus
  7. Sergey N. Filippov, Kamil Yu. Magadov, “Positive tensor products of qubit maps and n-tensor-stable positive qubit maps”, J. Phys. A, 50 (2017), 55301–21  mathnet  crossref  isi  scopus
  8. G. G. Amosov, I. Yu. Zhdanovskii, “Structure of the Algebra Generated by a Noncommutative Operator Graph which Demonstrates the Superactivation Phenomenon for Zero-Error Capacity”, Math. Notes, 99:6 (2016), 924–927  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  9. Jeonghoon Park, Soojoon Lee, “Quantum nonsignaling-assisted zero-error classical capacity of qubit channels”, Phys. Rev. A, 93:3 (2016)  crossref
  10. Elloá B. Guedes, Francisco Marcos de Assis, Rex A. C Medeiros, Quantum Zero-Error Information Theory, 2016, 79  crossref
Previous
1
2
3
Next