19 citations to https://www.mathnet.ru/eng/itsf1
  1. I. Shilin, J. Choi, “Method of continual addition theorems and integral relations between the Coulomb functions and the Appell function $F_1$”, Comput. Math. Math. Phys., 62:9 (2022), 1486–1495  mathnet  mathnet  crossref  crossref
  2. S. I. Bezrodnykh, “Analytic continuation of Lauricella's function FD(N) for large in modulo variables near hyperplanes {zj = zl}”, Integral Transforms and Special Functions, 33:4 (2022), 276  crossref
  3. S. I. Bezrodnykh, “Formulas for analytic continuation of Horn functions of two variables”, Comput. Math. Math. Phys., 62:6 (2022), 884–903  mathnet  mathnet  crossref  crossref
  4. Mikhail Kalmykov, Vladimir Bytev, Bernd A. Kniehl, Sven-Olaf Moch, Bennie F. L. Ward, Scott A. Yost, Texts & Monographs in Symbolic Computation, Anti-Differentiation and the Calculation of Feynman Amplitudes, 2021, 189  crossref
  5. S. I. Bezrodnykh, “Horn's hypergeometric functions with three variables”, Integral Transforms and Special Functions, 32:3 (2021), 207  crossref
  6. S. I. Bezrodnykh, “Analytic continuation of Lauricella's functions , and”, Integral Transforms and Special Functions, 31:11 (2020), 921  crossref
  7. S. I. Bezrodnykh, “Analytic continuation of the Horn hypergeometric series with an arbitrary number of variables”, Integral Transforms and Special Functions, 31:10 (2020), 788  crossref
  8. Ryo Nishimura, “Monotonicity of asymptotic relations for generalized hypergeometric functions”, Journal of Mathematical Analysis and Applications, 480:1 (2019), 123377  crossref
  9. S. I. Bezrodnykh, “The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications”, Russian Math. Surveys, 73:6 (2018), 941–1031  mathnet  mathnet  crossref  crossref  isi  scopus
Previous
1
2