75 citations to https://www.mathnet.ru/eng/mmj164
  1. Bellamy G., Schedler T., “Symplectic Resolutions of Quiver Varieties”, Sel. Math.-New Ser., 27:3 (2021), 36  crossref  mathscinet  isi  scopus
  2. Leung N.C., Yu Sh., “Equivariant Deformation Quantization and Coadjoint Orbit Method”, Duke Math. J., 170:8 (2021), 1781–1850  crossref  mathscinet  isi  scopus
  3. Losev I., “Harish-Chandra Bimodules Over Quantized Symplectic Singularities”, Transform. Groups, 26:2 (2021), 565–600  crossref  mathscinet  isi  scopus
  4. Roman Bezrukavnikov, Ivan Losev, “Etingof's conjecture for quantized quiver varieties”, Invent. math., 223:3 (2021), 1097  crossref
  5. Pierrick Bousseau, “Quantum mirrors of log Calabi–Yau surfaces and higher-genus curve counting”, Compositio Math., 156:2 (2020), 360  crossref
  6. Baranovsky V., Chen T., “Quantization of Vector Bundles on Lagrangian Subvarieties”, Int. Math. Res. Notices, 2019:12 (2019), 3718–3739  crossref  mathscinet  zmath  isi  scopus
  7. Webster B., “a Categorical Action on Quantized Quiver Varieties”, Math. Z., 292:1-2 (2019), 611–639  crossref  mathscinet  zmath  isi  scopus
  8. Kamnitzer J., Tingley P., Webster B., Weekes A., Yacobi O., “Highest Weights For Truncated Shifted Yangians and Product Monomial Crystals”, J. Comb. Algebra, 3:3 (2019), 237–303  crossref  mathscinet  zmath  isi  scopus
  9. Pridham J.P., “Deformation Quantisation For Unshifted Symplectic Structures on Derived Arlin Stacks”, Sel. Math.-New Ser., 24:4 (2018), 3027–3059  crossref  mathscinet  zmath  isi  scopus
  10. Losen I., “Quantizations of Regular Functions on Nilpotent Orbits”, Bull. Inst. Math. Acad. Sin. New Ser., 13:2 (2018), 199–225  crossref  mathscinet  isi
Previous
1
2
3
4
5
6
7
8
Next