38 citations to https://www.mathnet.ru/eng/mmj278
  1. Piene R., “Discriminants, Polytopes, and Toric Geometry”, Mathematics in the 21St Century, Springer Proceedings in Mathematics & Statistics, 98, eds. Cartier P., Choudary A., Waldschmidt M., Springer, 2015, 151–162  crossref  mathscinet  zmath  isi  scopus
  2. Gauthier Umana V., Velasco M., “Dual Toric Codes and Polytopes of Degree One”, SIAM Discret. Math., 29:1 (2015), 683–692  crossref  mathscinet  zmath  isi  scopus
  3. Sandra Di Rocco, Christian Haase, Benjamin Nill, Andreas Paffenholz, “Polyhedral adjunction theory”, Algebra Number Theory, 7:10 (2013), 2417  crossref
  4. Castryck W., Cools F., “Newton Polygons and Curve Gonalities”, J. Algebr. Comb., 35:3 (2012), 345–366  crossref  mathscinet  isi  scopus
  5. Dickenstein A., Nill B., Vergne M., “A Relation Between Number of Integral Points, Volumes of Faces and Degree of the Discriminant of Smooth Lattice Polytopes”, C. R. Math., 350:5-6 (2012), 229–233  crossref  mathscinet  zmath  isi  scopus
  6. Nill B., Ziegler G.M., “Projecting lattice polytopes without interior lattice points”, Math. Oper. Res., 36:3 (2011), 462–467  crossref  mathscinet  zmath  isi  scopus
  7. Treutlein J., “Lattice polytopes of degree 2”, J. Comb. Theory, Ser. A, 117:3 (2010), 354–360  crossref  mathscinet  zmath  isi  scopus
  8. Victor Batyrev, Dorothee Juny, “Classification of Gorenstein toric Del Pezzo varieties in arbitrary dimension”, Mosc. Math. J., 10:2 (2010), 285–316  mathnet  crossref  mathscinet
  9. Dickenstein A., Nill B., “A simple combinatorial criterion for projective toric manifolds with dual defect”, Math. Res. Lett., 17:3 (2010), 435–448  crossref  mathscinet  zmath  isi
  10. Payne S., “Lattice polytopes cut out by root systems and the Koszul property”, Adv. Math., 220:3 (2009), 926–935  crossref  mathscinet  zmath  isi  scopus
Previous
1
2
3
4
Next