20 citations to https://www.mathnet.ru/rus/aca1
-
Alexander M. Banaru, Konstantin G. Seravkin, Daria A. Banaru, Sergey M. Aksenov, Eric A. Lord, “How many symmetry operations are needed to generate a space group?”, Zeitschrift für Kristallographie - Crystalline Materials, 2025
-
N. P. Dolbilin, “Delone sets: local rules, countable families and periodicity”, Lobachevskii J. Math., 46:3 (2025), 1040–1056
-
Jonathan McManus, Vitaliy Kurlin, “Computing the bridge length: the key ingredient in a continuous isometry classification of periodic point sets”, Acta Crystallogr A Found Adv, 81:6 (2025), 427
-
Н. П. Долбилин, “Локальная теория правильных систем и множеств Делоне”, Труды МИАН, 325 (2024), 129–145
; N. P. Dolbilin, “Local Theory of Regular Systems and Delone Sets”, Proc. Steklov Inst. Math., 325 (2024), 120–135
-
A. M. Banaru, D. A. Banaru, S. M. Aksenov, “Structural Classes of Dimethylsulfate and Benzonitrile”, J Struct Chem, 64:4 (2023), 631
-
D. A. Banaru, S. M. Aksenov, A. M. Banaru, K. A. Potekhin, “Structural Classes with a Sole Bearing Contact of Chained Structural Units”, Crystallogr. Rep., 68:4 (2023), 546
-
D. A. Banaru, S. M. Aksenov, A. M. Banaru, K. A. Potekhin, “STRUCTURAL CLASSES WITH A SOLE BEARING CONTACT OF CHAINED STRUCTURAL UNITS”, Кристаллография, 68:4 (2023), 546
-
Н. П. Долбилин, М. И. Штогрин, “Множества и разбиения Делоне: локальный подход”, Труды МИАН, 318 (2022), 73–98
; N. P. Dolbilin, M. I. Shtogrin, “Delone Sets and Tilings: Local Approach”, Proc. Steklov Inst. Math., 318 (2022), 65–89
-
D. A. Banaru, A. M. Banaru, S. M. M. Aksenov, “STRUCTURAL COMPLEXITY OF POLYMORPHS OF CALCIUM CARBONATE AND ITS CRYSTALLINE HYDRATES”, J Struct Chem, 63:8 (2022), 1291
-
Nikolay Dolbilin, Alexey Garber, Undine Leopold, Egon Schulte, Marjorie Senechal, “On the regularity radius of Delone sets in $\mathbb R^3$”, Discrete Comput. Geom., 66 (2021), 996–1024