19 citations to https://www.mathnet.ru/rus/at14565
  1. Alexander Gasnikov, Darina Dvinskikh, Pavel Dvurechensky, Eduard Gorbunov, Aleksandr Beznosikov, Alexander Lobanov, Encyclopedia of Optimization, 2024, 1  crossref
  2. A. V. Gasnikov, A. V. Lobanov, F. S. Stonyakin, “Highly Smooth Zeroth-Order Methods for Solving Optimization Problems under the PL Condition”, Comput. Math. and Math. Phys., 64:4 (2024), 739  crossref
  3. Б. А. Альашкар, А. В. Гасников, Д. М. Двинских, А. В. Лобанов, “Безградиентные методы федеративного обучения с $l_1$ и $l_2$-рандомизацией для задач негладкой выпуклой стохастической оптимизации”, Ж. вычисл. матем. и матем. физ., 63:9 (2023), 1458–1512  mathnet  crossref; B. A. Alashkar, A. V. Gasnikov, D. M. Dvinskikh, A. V. Lobanov, “Gradient-free federated learning methods with $l_1$ and $l_2$-randomization for non-smooth convex stochastic optimization problems”, Comput. Math. Math. Phys., 63:9 (2023), 1600–1653  mathnet  crossref
  4. Pavel Dvurechensky, Alexander Gasnikov, Alexander Tyurin, Vladimir Zholobov, Springer Proceedings in Mathematics & Statistics, 425, Foundations of Modern Statistics, 2023, 511  crossref
  5. Nikita Kornilov, Alexander Gasnikov, Pavel Dvurechensky, Darina Dvinskikh, “Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact”, Comput Manag Sci, 20:1 (2023)  crossref
  6. Eduard Gorbunov, Pavel Dvurechensky, Alexander Gasnikov, “An Accelerated Method for Derivative-Free Smooth Stochastic Convex Optimization”, SIAM J. Optim., 32:2 (2022), 1210  crossref
  7. Vladimir Krutikov, Svetlana Gutova, Elena Tovbis, Lev Kazakovtsev, Eugene Semenkin, “Relaxation Subgradient Algorithms with Machine Learning Procedures”, Mathematics, 10:21 (2022), 3959  crossref
  8. Eduard Gorbunov, Alexander Rogozin, Aleksandr Beznosikov, Darina Dvinskikh, Alexander Gasnikov, Springer Optimization and Its Applications, 191, High-Dimensional Optimization and Probability, 2022, 253  crossref
  9. P. Dvurechensky, E. Gorbunov, A. Gasnikov, “An accelerated directional derivative method for smooth stochastic convex optimization”, Eur. J. Oper. Res., 290:2 (2021), 601–621  crossref  mathscinet  isi  scopus
  10. Dvinskikh D., “Stochastic Approximation Versus Sample Average Approximation For Wasserstein Barycenters”, Optim. Method Softw., 2021  crossref  isi
1
2
Следующая