101 citations to https://www.mathnet.ru/rus/cmfd131
  1. A. M. Mohamad, Dhananjay Yadav, Mukesh Kumar Awasthi, Ravi Ragoju, Amit Mahajan, Mohammad Hassan, “Influence of temperature reliant viscosity on the magnetohydrodynamic instability in a Navier–Stokes–Voigt fluid”, Multiscale and Multidiscip. Model. Exp. and Des., 9:1 (2026)  crossref
  2. H. B. de Oliveira, Kh. Khompysh, A. G. Shakir, “Strong solutions for the Navier–Stokes–Voigt equations with non-negative density”, Journal of Mathematical Physics, 66:4 (2025)  crossref
  3. Khonatbek Khompysh, Michael Ruzhansky, “Inverse source problems for time-fractional nonlinear pseudoparabolic equations with p-Laplacian”, Fract Calc Appl Anal, 2025  crossref
  4. V. G. Zvyagin, M. V. Turbin, “Weak Solvability of the Initial-Boundary Value Problem for the Second-Order Kelvin–Voigt Model with Smoothed Jaumann Derivative”, Russ Math., 69:2 (2025), 67  crossref
  5. Sweta Sharma, Sunil, Poonam Sharma, “Thermal Convection in a Navier–Stokes–Voigt Fluid Saturating a Porous Medium Using Thermal Nonequilibrium Model”, J. Phys. Soc. Jpn., 94:7 (2025)  crossref
  6. A. Ndongmo Ngana, T. Tachim Medjo, P. M. Tchepmo Djomegni, “Weak solutions to the generalized nonhomogeneous incompressible Kelvin–Voigt–Cahn–Hilliard system”, J. Evol. Equ., 25:3 (2025)  crossref
  7. Amit Mahajan, Saravanan P, “Convective Heat Transfer in Brinkman–Darcy–Kelvin–Voigt Fluid with Variable Gravity and Generalized Maxwell–Cattaneo Law”, Transp Porous Med, 152:8 (2025)  crossref
  8. D. K. Durdiev, H. B. Elmuradova, “An Inverse Problem of Determining the Kernel of a Fractional Pseudo-Integro-Differential Equation”, Lobachevskii J Math, 46:3 (2025), 1237  crossref
  9. V. G. Zvyagin, A. V. Zvyagin, V. P. Orlov, M. V. Turbin, “Weak Solvability of the Initial Boundary Value Problem for the Voigt Model with a Smoothed Jaumann Time Derivative Taking into Account the Memory of Fluid Motion”, Lobachevskii J Math, 46:3 (2025), 1183  crossref
  10. А. В. Звягин, “Существование слабых решений стационарной альфа-модели, описывающей движение растворов полимеров”, Нелокальные и нелинейные задачи, СМФН, 71, № 1, Российский университет дружбы народов, M., 2025, 96–109  mathnet  crossref
1
2
3
4
11
Следующая