33 citations to https://www.mathnet.ru/rus/cmfd69
-
Werner M. Seiler, Matthias Seiß, Lecture Notes in Computer Science, 12291, Computer Algebra in Scientific Computing, 2020, 14
-
Н. Г. Павлова, А. О. Ремизов, “Завершение классификации типичных особенностей геодезических потоков в метриках двух классов”, Изв. РАН. Сер. матем., 83:1 (2019), 119–139
; N. G. Pavlova, A. O. Remizov, “Completion of the classification of generic singularities of geodesic
flows in two classes of metrics”, Izv. Math., 83:1 (2019), 104–123
-
Chupakhin A.P., Yanchenko A.A., “Ovsyannikov Vortex in Relativistic Hydrodynamics”, J. Appl. Mech. Tech. Phys., 60:2 (2019), 187–199
-
L. Ortiz-Bobadilla, E. Rosales-González, S. M. Voronin, “Analytic Classification of Foliations Induced by Germs of Holomorphic Vector Fields in
(
ℂ
n
,
0
)
$(\mathbb {C}^{n},0)$
with Non-isolated Singularities”, J Dyn Control Syst, 25:3 (2019), 491
-
Victor Ayala, Philippe Jouan, “Singular linear systems on Lie groups; equivalence”, Systems & Control Letters, 120 (2018), 1
-
N. G. Pavlova, A. O. Remizov, Springer Proceedings in Mathematics & Statistics, 222, Singularities and Foliations. Geometry, Topology and Applications, 2018, 135
-
Chupakhin A.P., Yanchenko A.A., “Special Vortex in Relativistic Hydrodynamics”: A. Chesnokov, E. Pruuel, V. Shelukhin, All-Russian Conference With International Participation Modern Problems of Continuum Mechanics and Explosion Physics Dedicated to the 60th Anniversary of Lavrentyev Institute of Hydrodynamics SB RAS, Journal of Physics Conference Series, 894, IOP Publishing Ltd, 2017, UNSP 012114
-
А. Н. Курбацкий, Н. Г. Павлова, А. О. Ремизов, “Особенности геодезических потоков и линий в псевдофинслеровых пространствах. III”, Вестник Тамбовского университета. Серия: естественные и технические науки, 22:3 (2017), 539–551
-
A. O. Remizov, “Geodesics in generalized Finsler spaces: singularities in dimension two”, J. Singul., 14 (2016), 172–193
-
Ugo Boscain, Ludovic Sacchelli, Mario Sigalotti, “Generic singularities of line fields on 2D manifolds”, Differential Geom. Appl., 49 (2016), 326–350