4 citations to https://www.mathnet.ru/rus/danma354
  1. H. B. de Oliveira, Kh. Khompysh, A. G. Shakir, “Strong solutions for the Navier–Stokes–Voigt equations with non-negative density”, Journal of Mathematical Physics, 66:4 (2025)  crossref
  2. V. G. Zvyagin, M. V. Turbin, “Unique Strong Solvability of the Initial Boundary Value Problem for Inhomogeneous Incompressible Kelvin–Voigt Fluid Model”, Dokl. Math., 111:2 (2025), 110  crossref
  3. Victor Zvyagin, Mikhail Turbin, “Weak solvability of the initial-boundary value problem for a finite-order model of the inhomogeneous incompressible Kelvin-Voigt fluid without a positive lower bound on the initial condition of fluid density”, EECT, 2024  crossref
  4. В. Г. Звягин, М. В. Турбин, “Теорема существования слабых решений начально-краевой задачи для неоднородной несжимаемой модели Кельвина–Фойгта без ограничения снизу на начальное значение плотности”, Матем. заметки, 114:4 (2023), 628–632  mathnet  crossref; V. G. Zvyagin, M. V. Turbin, “An Existence Theorem for Weak Solutions of the Initial–Boundary Value Problem for the Inhomogeneous Incompressible Kelvin–Voigt Model in Which the Initial Value of Density is Not Bounded from Below”, Math. Notes, 114:4 (2023), 630–634  crossref