33 citations to https://www.mathnet.ru/rus/ijes1
-
Vasily Vedeneev, “Nonlinear steady states of hyperelastic membrane tubes conveying a viscous non-Newtonian fluid”, Journal of Fluids and Structures, 98 (2020), 103113
-
L Angela Mihai, Danielle Fitt, Thomas E Woolley, Alain Goriely, “Likely oscillatory motions of stochastic hyperelastic solids”, Transactions of Mathematics and Its Applications, 3:1 (2019)
-
A. N. Korenkov, “Solitary Waves on a Cylinder Shell with Liquid”, Vestnik St.Petersb. Univ.Math., 52:1 (2019), 92
-
N. Varatharajan, Anirvan DasGupta, “Spectral stability of the bifurcation state of an arterial model with perivascular soft tissues”, Mechanics Research Communications, 91 (2018), 7
-
Alireza Gholipour, Mergen H. Ghayesh, Anthony Zander, “Nonlinear biomechanics of bifurcated atherosclerotic coronary arteries”, International Journal of Engineering Science, 133 (2018), 60
-
Alireza Gholipour, Mergen H. Ghayesh, Anthony Zander, Rajiv Mahajan, “Three-dimensional biomechanics of coronary arteries”, International Journal of Engineering Science, 130 (2018), 93
-
А. Т. Ильичев, “Устойчивость уединенных волн в мембранных трубах: слабонелинейный анализ”, ТМФ, 193:2 (2017), 214–224
; A. T. Il'ichev, “Stability of solitary waves in membrane tubes: A weakly nonlinear
analysis”, Theoret. and Math. Phys., 193:2 (2017), 1593–1601
-
Yang Zhou, Arne Nordmark, Anders Eriksson, “Instability investigation for rotating thin spherical membrane”, International Journal of Non-Linear Mechanics, 97 (2017), 96
-
N. Varatharajan, Anirvan DasGupta, “Study of bifurcation in a pressurized hyperelastic membrane tube enclosed by a soft substrate”, International Journal of Non-Linear Mechanics, 95 (2017), 233
-
А. Т. Ильичев, А. П. Чугайнова, “Теория спектральной устойчивости гетероклинических решений уравнения Кортевега–де Фриза–Бюргерса с произвольным потенциалом”, Труды МИАН, 295 (2016), 163–173
; A. T. Il'ichev, A. P. Chugainova, “Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential”, Proc. Steklov Inst. Math., 295 (2016), 148–157