29 citations to https://www.mathnet.ru/rus/im1148
-
Mark A., “The Classification of Rank 3 Reflective Hyperbolic Lattices Over Z[Root 2]”, Math. Proc. Camb. Philos. Soc., 164:2 (2018), 221–257
-
Linowitz B., “Bounds For Arithmetic Hyperbolic Reflection Groups in Dimension 2”, Transform. Groups, 23:3 (2018), 743–753
-
Н. В. Богачев, А. Ю. Перепечко, “Алгоритм Винберга для гиперболических решёток”, Матем. заметки, 103:5 (2018), 769–773
; N. V. Bogachev, A. Yu. Perepechko, “Vinberg's Algorithm for Hyperbolic Lattices”, Math. Notes, 103:5 (2018), 836–840
-
Ishida M., “Cusp Singularities and Quasi-Polyhedral Sets”, Algebraic Varieties and Automorphism Groups, Advanced Studies in Pure Mathematics, 75, eds. Masuda K., Kishimoto T., Kojima H., Miyanishi M., Zaidenberg M., Math Soc Japan, 2017, 163–182
-
Belolipetsky M., “Arithmetic hyperbolic reflection groups”, Bull. Amer. Math. Soc., 53:3 (2016), 437–475
-
Mark A., “Reflection Groups of the Quadratic Form -Px(0)(2) + X(1)(2) + ... X(N)(2) With P Prime”, Publ. Mat., 59:2 (2015), 353–372
-
M. Belolipetsky, B. Linowitz, “On Fields of Definition of Arithmetic Kleinian Reflection Groups II”, International Mathematics Research Notices, 2013
-
Anna Felikson, Pavel Tumarkin, “Essential hyperbolic Coxeter polytopes”, Isr. J. Math, 2013
-
Oleg Karpenkov, Algorithms and Computation in Mathematics, 26, Geometry of Continued Fractions, 2013, 357
-
Maclachlan C., “Bounds for discrete hyperbolic arithmetic reflection groups in dimension 2”, Bull. Lond. Math. Soc., 43:1 (2011), 111–123