88 citations to https://www.mathnet.ru/rus/im389
-
Krug A., “on Derived Autoequivalences of Hilbert Schemes and Generalized Kummer Varieties”, Int. Math. Res. Notices, 2015, no. 20, 10680–10701
-
Meachan C., “Derived Autoequivalences of Generalised Kummer Varieties”, Math. Res. Lett., 22:4 (2015), 1193–1221
-
K. Kawatani, “Fourier-Mukai transformations on K3 surfaces with $\rho=1$ and Atkin-Lehner involutions”, J. Algebra, 417 (2014), 103–115
-
A. Polishchuk, “Phases of Lagrangian-invariant objects in the derived category of an abelian variety”, Kyoto J. Math., 54:2 (2014), 427–482
-
A. Auel, M. Bernardara, M. Bolognesi, “Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems”, J. Math. Pures Appl. (9), 102:1 (2014), 249–291
-
N. Broomhead, D. Ploog, “Autoequivalences of toric surfaces”, Proc. Amer. Math. Soc., 142:4 (2014), 1133–1146
-
M. G. Gulbrandsen, “Donaldson-Thomas invariants for complexes on abelian threefolds”, Math. Z., 273:1-2 (2013), 219–236
-
Sh. Yanagida, K. Yoshioka, “Semi-homogeneous sheaves, Fourier-Mukai transforms and moduli of stable sheaves on abelian surfaces”, J. Reine Angew. Math., 684 (2013), 31–86
-
A. C. López Martín, D. Sánchez Gómez, C. Tejero Prieto, “Relative Fourier-Mukai transforms for Weierstraß fibrations, abelian schemes and Fano fibrations”, Math. Proc. Cambridge Philos. Soc., 155:1 (2013), 129–153
-
U. V. Dubey, V. M. Mallick, “Reconstruction of a superscheme from its derived category”, J. Ramanujan Math. Soc., 28:2 (2013), 179–193