18 citations to https://www.mathnet.ru/rus/im8413
  1. Н. А. Степанов, М. А. Скворцов, “Ляпуновская экспонента в задаче Уитни со случайной накачкой”, Письма в ЖЭТФ, 112:6 (2020), 394–400  mathnet  crossref; N. A. Stepanov, M. A. Skvortsov, “Lyapunov exponent for Whitney's problem with random drive”, JETP Letters, 112:6 (2020), 376–382  crossref  isi  elib
  2. Ivan Polekhin, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
  3. R. Srzednicki, “On periodic solutions in the whitney's inverted pendulum problem”, Discret. Contin. Dyn. Syst.-Ser. S, 12:7 (2019), 2127–2141  crossref  mathscinet  isi
  4. I. Polekhin, “On topological obstructions to global stabilization of an inverted pendulum”, Syst. Control Lett., 113 (2018), 31–35  crossref  mathscinet  zmath  isi  scopus
  5. S. Ozana, M. Schlegel, “Computation of reference trajectories for inverted pendulum with the use of two-point BvP with free parameters”, IFAC PAPERSONLINE, 51:6 (2018), 408–413  crossref  isi  scopus
  6. I. Polekhin, “On motions without falling of an inverted pendulum with dry friction”, J. Geom. Mech., 10:4 (2018), 411–417  crossref  mathscinet  isi
  7. И. Ю. Полехин, “О невозможности глобальной стабилизации волчка Лагранжа”, ПММ, 82:5 (2018), 599–604  mathnet  crossref  elib; I. Yu. Polekhin, “On the impossibility of global stabilization of the Lagrange top”, Mech. Sol., 53:2 (2018), S71–S75  crossref  mathscinet  isi  scopus
  8. Polekhin I., “A Topological View on Forced Oscillations and Control of An Inverted Pendulum”, Geometric Science of Information, Gsi 2017, Lecture Notes in Computer Science, 10589, eds. Nielsen F., Barbaresco F., Springer International Publishing Ag, 2017, 329–335  crossref  mathscinet  zmath  isi  scopus
Предыдущая
1
2