43 citations to https://www.mathnet.ru/rus/into121
-
А.Ашыралыев, А. Хамад, “О нелокальной краевой задаче для эллиптических дифференциальных уравнений с условиями Самарского—Ионкина интегрального типа”, СМФН, 71:1 (2025), 1–17
[A.Ashyralyev, A. Hamad, “On the nonlocal boundary value problem for the elliptic differential equations with integral type Samarskii–Ionkin conditions”, CMFD, 71:1 (2025), 1–17
] -
A. Ashyralyev, A. Hamad, “ABOUT A NONLOCAL BOUNDARY-VALUE PROBLEM FOR ELLIPTIC DIFFERENTIAL EQUATIONS WITH SAMARSKII–IONKIN CONDITIONS OF INTEGRAL TYPE”, J Math Sci, 2025
-
Cécile Della Valle, Camille Pouchol, “Solving Abel integral equations by regularisation in Hilbert scales”, Journal of Mathematical Analysis and Applications, 539:1 (2024), 128535
-
Ayman Hamad, Trends in Mathematics, 6, Analysis and Applied Mathematics, 2024, 155
-
Ya. О. Baranetskij, І. І. Demkiv, P. І. Kalenyuk, “Nonlocal Problem with Multipoint Perturbations of the Birkhoff Strongly Regular Boundary Conditions for an Even-Order Differential Operator”, J Math Sci, 270:1 (2023), 19
-
N. S. Imanbaev, “On Basic Properties of Eigenfunctions and Associated Functions of One Loaded Operator of Multiple Differentiation”, Lobachevskii J Math, 43:3 (2022), 749
-
V.N.P. Anghel, B. Sur, L. Li, “Reactor space-dependent transfer function at low frequency approximated by neutron diffusion theory perturbation”, Annals of Nuclear Energy, 174 (2022), 109186
-
Makhmud Sadybekov, Aishabibi Dukenbayeva, “On boundary value problems of the Samarskii–Ionkin type for the Laplace operator in a ball”, Complex Variables and Elliptic Equations, 67:2 (2022), 369
-
А. С. Макин, “О двухточечных краевых задачах для операторов Штурма—Лиувилля и Дирака”, Материалы Воронежской весенней математической школы
«Современные методы теории краевых задач. Понтрягинские чтения–XXX». Воронеж, 3–9 мая 2019 г. Часть 5, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 194, ВИНИТИ РАН, М., 2021, 144–154
-
Ya. О. Baranetskij, P. І. Kalenyuk, “Nonlocal Problem with Multipoint Perturbations of Sturm-Type Boundary Conditions for an Ordinary Differential Equation of Even Order”, J Math Sci, 258:4 (2021), 392