14 citations to https://www.mathnet.ru/rus/ivm7237
-
А. В. Звягин, “Существование слабых решений стационарной альфа-модели, описывающей движение растворов полимеров”, Нелокальные и нелинейные задачи, СМФН, 71, № 1, Российский университет дружбы народов, M., 2025, 96–109
-
A. V. Zvyagin, “THE EXISTENCE OF WEAK SOLUTIONS TO THE STATIONARY ALPHA MODEL THAT DESCRIBES THE MOTION OF POLYMER LIQUORS”, J Math Sci, 2025
-
E. I. Kostenko, “Investigation of Weak Solvability of One Model Nonlinear Viscosity Fluid”, Lobachevskii J Math, 45:4 (2024), 1421
-
А. В. Звягин, “Слабая разрешимость нелинейно-вязкой модели Павловского”, Изв. вузов. Матем., 2022, № 6, 87–93
; A. V. Zvyagin, “Weak solvability of non-linearly viscous Pavlovsky model”, Russian Math. (Iz. VUZ), 66:6 (2022), 73–78
-
Andrey Zvyagin, “Solvability of the Non-Linearly Viscous Polymer Solutions Motion Model”, Polymers, 14:6 (2022), 1264
-
Ashyralyev A., Zvyagin V., Zvyagin A., “About Optimal Feedback Control Problem For Motion Model of Nonlinearly Viscous Fluid”, AIP Conference Proceedings, 2325, eds. Ashyralyev A., Ashyralyyev C., Erdogan A., Lukashov A., Sadybekov M., Amer Inst Physics, 2021, 020003
-
Oksana A. Burmistrova, Sergey V. Meleshko, Vladislav V. Pukhnachev, “Exact Solutions of Boundary Layer Equations in Polymer Solutions”, Symmetry, 13:11 (2021), 2101
-
М. В. Турбин, А. С. Устюжанинова, “Теорема существования слабого решения начально-краевой задачи для системы уравнений, описывающей движение слабых водных растворов полимеров”, Изв. вузов. Матем., 2019, № 8, 62–78
; M. V. Turbin, A. S. Ustiuzhaninova, “The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions”, Russian Math. (Iz. VUZ), 63:8 (2019), 54–69
-
Zvyagin V., Obukhovskii V., Zvyagin A., “on Inclusions With Multivalued Operators and Their Applications To Some Optimization Problems”, J. Fixed Point Theory Appl., 16:1-2 (2014), 27–82
-
Zvyagin A., “Solvability of the Stationary Mathematical Model of a Non-Newtonian Fluid Motion With Objective Derivative”, Fixed Point Theory, 15:2 (2014), 623–634