17 citations to https://www.mathnet.ru/rus/ivm9492
-
В. Г. Звягин, М. В. Турбин, “Разрешимость в слабом смысле начально-краевой задачи для модели Кельвина–Фойгта второго порядка со сглаженной производной Яуманна”, Изв. вузов. Матем., 2025, № 2, 91–97
; V. G. Zvyagin, M. V. Turbin, “Weak solvability of the initial-boundary value problem for the second-order Kelvin–Voigt model with smoothed Jaumann derivative”, Russian Math. (Iz. VUZ), 69:2 (2025), 67–71
-
М. В. Турбин, А. С. Устюжанинова, “Аттракторы модифицированной модели Кельвина — Фойгта с учетом памяти вдоль траекторий движения жидкости”, Уфимск. матем. журн., 17:1 (2025), 77–104
; M. V. Turbin, A. S. Ustiuzhaninova, “Attractors of modified Kelvin — Voigt model with memory along fluid trajectories”, Ufa Math. J., 17:1 (2025), 74–101
-
M. V. Turbin, A. S. Ustiuzhaninova, “Solvability of an Initial–Boundary Value Problem
for the Modified Kelvin–Voigt Model with Memory
along Fluid Motion Trajectories”, Diff Equat, 60:2 (2024), 180
-
M. V. Turbin, A. S. Ustiuzhaninova, “Solvability of initial-boundary value problem for the modified Kelvin–Voigt model with memory along trajectories of fluid motion”, Differencialʹnye uravneniâ, 60:2 (2024), 187
-
А. С. Устюжанинова, “Равномерные аттракторы модели Бингама”, Изв. вузов. Матем., 2024, № 8, 65–80
; A. S. Ustiuzhaninova, “Uniform attractors for the Bingham model”, Russian Math. (Iz. VUZ), 68:8 (2024), 56–69
-
Victor Zvyagin, Mikhail Turbin, “Weak solvability of the initial-boundary value problem for a finite-order model of the inhomogeneous incompressible Kelvin-Voigt fluid without a positive lower bound on the initial condition of fluid density”, EECT, 2024
-
Victor Zvyagin, Mikhail Turbin, “Weak solvability of the initial-boundary value problem for inhomogeneous incompressible Kelvin–Voigt fluid motion model of arbitrary finite order”, J. Fixed Point Theory Appl., 25:3 (2023)
-
Mikhail Turbin, Anastasiia Ustiuzhaninova, “Existence of weak solution to initial-boundary value problem for finite order Kelvin–Voigt fluid motion model”, Bol. Soc. Mat. Mex., 29:2 (2023)
-
Ustiuzhaninova A., Turbin M., “Feedback Control Problem For Modified Kelvin-Voigt Model”, J. Dyn. Control Syst., 28:3 (2022), 465–480
-
А. В. Звягин, “Слабая разрешимость нелинейно-вязкой модели Павловского”, Изв. вузов. Матем., 2022, № 6, 87–93
; A. V. Zvyagin, “Weak solvability of non-linearly viscous Pavlovsky model”, Russian Math. (Iz. VUZ), 66:6 (2022), 73–78