32 citations to https://www.mathnet.ru/rus/jsm7
  1. Jean Michel Maillet, Giuliano Niccoli, Louis Vignoli, “Separation of variables bases for integrable $gl_{\mathcal{M}|\mathcal{N}}$ and Hubbard models”, SciPost Phys., 9:4 (2020)  crossref
  2. Jean Michel Maillet, Giuliano Niccoli, “Complete spectrum of quantum integrable lattice models associated to Y(gl(n)) by separation of variables”, SciPost Phys., 6:6 (2019)  crossref
  3. S. Belliard, N. A. Slavnov, “Why scalar products in the algebraic Bethe ansatz have determinant representation”, JHEP, 2019:10 (2019), 103–17  mathnet  crossref  isi  scopus
  4. Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$”, SciPost Phys., 4 (2018), 6–30  mathnet  crossref  isi
  5. Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018  crossref
  6. Н. А. Славнов, “Детерминантные представления для скалярных произведений в алгебраическом анзаце Бете”, ТМФ, 197:3 (2018), 435–443  mathnet  crossref  isi  scopus; N. A. Slavnov, “Determinant representations for scalar products in the algebraic Bethe ansatz”, Theoret. and Math. Phys., 197:3 (2018), 1771–1778  mathnet  crossref
  7. Nikolay Gromov, Fedor Levkovich-Maslyuk, “New compact construction of eigenstates for supersymmetric spin chains”, J. High Energ. Phys., 2018:9 (2018)  crossref
  8. Nikolay Gromov, Fedor Levkovich-Maslyuk, Grigory Sizov, “New construction of eigenstates and separation of variables for SU(N) quantum spin chains”, J. High Energ. Phys., 2017:9 (2017)  crossref
  9. A. Hustalyuk, A. Liashyk, S. Pakulyak, E. Ragoucy, N. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry. 1. Super-analog of Reshetikhin formula”, J. Phys. A, 49:45 (2016), 454005–28  mathnet  crossref  isi  scopus
  10. Gilberto Santos, Changrim Ahn, Angela Foerster, Itzhak Roditi, “Bethe states for the two-site Bose–Hubbard model: A binomial approach”, Physics Letters B, 746 (2015), 186  crossref
Предыдущая
1
2
3
4
Следующая