72 citations to https://www.mathnet.ru/rus/mmj279
-
G. Sharygin, A. Konyaev, Springer Proceedings in Mathematics & Statistics, 273, Recent Developments in Integrable Systems and Related Topics of Mathematical Physics, 2018, 130
-
Lauritzen N., Thomsen J.F., “Two Properties of Endomorphisms of Weyl Algebras”, J. Algebra, 479 (2017), 137–158
-
Negron C., “the Derived Picard Group of An Affine Azumaya Algebra”, Sel. Math.-New Ser., 23:2 (2017), 1449–1468
-
Sharygin G., “Deformation Quantization and the Action of Poisson Vector Fields”, Lobachevskii J. Math., 38:6 (2017), 1093–1107
-
Tang X., “Automorphisms For Some Symmetric Multiparameter Quantized Weyl Algebras and Their Localizations”, Algebr. Colloq., 24:3 (2017), 419–438
-
Lu JiaFeng, Wang XingTing, Zhuang GuangBin, “Dg Poisson Algebra and Its Universal Enveloping Algebra”, Sci. China-Math., 59:5 (2016), 849–860
-
Mauleshova G.S., Mironov A.E., “One-Point Commuting Difference Operators of Rank 1”, Dokl. Math., 93:1 (2016), 62–64
-
А. Е. Миронов, “Самосопряженные коммутирующие дифференциальные операторы ранга два”, УМН, 71:4(430) (2016), 155–184
; A. E. Mironov, “Self-adjoint commuting differential operators of rank two”, Russian Math. Surveys, 71:4 (2016), 751–779
-
de Goursac A., Sportiello A., Tanasa A., “the Jacobian Conjecture, a Reduction of the Degree to the Quadratic Case”, Ann. Henri Poincare, 17:11 (2016), 3237–3254
-
Mironov A.E., Zheglov A.B., “Commuting Ordinary Differential Operators With Polynomial Coefficients and Automorphisms of the First Weyl Algebra”, Int. Math. Res. Notices, 2016, no. 10, 2974–2993