21 citations to https://www.mathnet.ru/rus/molph1
  1. Egor O. Dobrolyubov, Ilya M. Efremov, Sergey V. Krasnoshchekov, Igor V. Polyakov, Vladimir B. Laptev, Sergey A. Klimin, Dmitry V. Millionshchikov, Olga V. Naumenko, “High-resolution ro-vibrational analysis of HCFC-22: Deciphering ν4 and 2ν6 bands of 12CH35ClF2 and ν4 band of 13CH35ClF2 species”, Journal of Quantitative Spectroscopy and Radiative Transfer, 348 (2026), 109721  crossref
  2. M. Mendolicchio, V. Barone, “Vibrational second-order perturbation theory based on curvilinear coordinates: Thermochemical applications”, The Journal of Chemical Physics, 162:15 (2025)  crossref
  3. Ruiqin Xu, Qin Yang, Julien Bloino, Malgorzata Biczysko, “Reliable Modeling of Anharmonic Spectra Line-Shapes from VPT2 and Hybrid QM Models: IR Spectrum of Uracil as a Test Case”, J. Phys. Chem. A, 2025  crossref
  4. Vincent Le Bris, Sergey V. Krasnoshchekov, Egor O. Dobrolyubov, Ilya M. Efremov, Igor V. Polyakov, Olivier Coulaud, Didier Bégué, “Juxtaposing the fourth order vibrational operator perturbation theory CVPT(4) and the adaptive VCI (A-VCI): Accuracy, vibrational resonances and polyads of C2H4 and C2D4”, Journal of Quantitative Spectroscopy and Radiative Transfer, 2025, 109586  crossref
  5. Qin Yang, Valery Andrushchenko, Jana Hudecová, Josef Kapitán, Julien Bloino, Isabelle Bowker, Petr Bouř, “Black-Box Simulations of Anharmonic Vibrational Chiroptical Spectra: Problems with Property Third Derivatives and the Solvent”, J. Chem. Theory Comput., 2025  crossref
  6. Lina Uribe, Silvia Di Grande, Luigi Crisci, Federico Lazzari, Marco Mendolicchio, Vincenzo Barone, “Accurate Structures and Rotational Constants of Steroid Hormones at DFT Cost: Androsterone, Testosterone, Estrone, β-Estradiol, and Estriol”, J. Phys. Chem. A, 128:13 (2024), 2629  crossref
  7. Egor O. Dobrolyubov, Igor V. Polyakov, Dmitry V. Millionshchikov, Sergey V. Krasnoshchekov, “Vibrational resonance phenomena of the OCS isotopologues studied by resummation of high-order Rayleigh–Schrödinger perturbation theory”, Journal of Quantitative Spectroscopy and Radiative Transfer, 316 (2024), 108909  crossref
  8. А. В. Комлов, Р. В. Пальвелев, “Нули дискриминантов, построенных по полиномам Эрмита–Паде алгебраической функции, и их связь с точками ветвления”, Матем. сб., 215:12 (2024), 56–88  mathnet  crossref [A. V. Komlov, R. V. Palvelev, “Zeros of discriminants constructed from Hermite–Padé polynomials of an algebraic function and their relation to branch points”, Mat. Sb., 215:12 (2024), 56–88  mathnet]
  9. А. В. Комлов, Р. В. Пальвелев, “Нули дискриминантов, построенных по полиномам Эрмита–Паде алгебраической функции, и их связь с точками ветвления”, Матем. сб., 215:12 (2024), 56–88  mathnet  crossref; A. V. Komlov, R. V. Palvelev, “Zeros of discriminants constructed from Hermite–Padé polynomials of an algebraic function and their relation to branch points”, Sb. Math., 215:12 (2024), 1633–1665  mathnet  crossref
  10. Xuanhao Chang, Egor O. Dobrolyubov, Sergey V. Krasnoshchekov, “Vibrational resonance analysis of linear molecules using resummation of divergent Rayleigh–Schrödinger perturbation theory series”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 288 (2023), 122071  crossref
1
2
3
Следующая