19 citations to https://www.mathnet.ru/rus/mzm8803
  1. D.I. Borisov, A.A. Fedotov, “Resonances and Scattering by a Periodic Structure”, Russ. J. Math. Phys., 32:2 (2025), 245  crossref
  2. D.I. Borisov, D.M. Polyakov, “Uniform Spectral Asymptotics for the Schrödinger Operator with Translation in Free Term and Periodic Boundary Conditions”, Russ. J. Math. Phys., 32:3 (2025), 434  crossref
  3. D. I. Borisov, D. M. Polyakov, “Spectral Properties of Schrödinger Operator With Translations and Neumann Boundary Conditions”, Math Methods in App Sciences, 2025  crossref
  4. D.I. Borisov, D.M. Polyakov, “Uniform Spectral Asymptotics for a Schrödinger Operator on a Segment with Delta-Interaction”, Russ. J. Math. Phys., 31:2 (2024), 149  crossref
  5. A.A. Arzhanov, S.A. Stepin, V.A. Titov, V.V. Fufaev, “Stokes Phenomenon and Spectral Locus in a Problem of Singular Perturbation Theory”, Russ. J. Math. Phys., 31:3 (2024), 351  crossref
  6. Stepin S.A., Fufaev V.V., “Wkb Asymptotics and Spectral Deformation in Semi-Classical Limit”, J. Dyn. Control Syst., 26:1 (2020), 175–198  crossref  mathscinet  isi  scopus
  7. Stepin S.A., Fufaev V.V., “Spectral Deformation in a Problem of Singular Perturbation Theory”, Dokl. Math., 99:1 (2019), 60–63  crossref  mathscinet  isi  scopus
  8. Shafarevich A., “Quantization Conditions on Riemannian Surfaces and Spectral Series of Non-Selfadjoint Operators”, Formal and Analytic Solutions of Diff. Equations, Springer Proceedings in Mathematics & Statistics, 256, ed. Filipuk G. Lastra A. Michalik S., Springer, 2018, 177–187  crossref  mathscinet  isi  scopus
  9. A. A. Shkalikov, S. N. Tumanov, “Spectral Portraits in the Semi-Classical Approximation of the Sturm-Liouville Problem with a Complex Potential”, J. Phys.: Conf. Ser., 1141 (2018), 012155  crossref
  10. С. А. Степин, В. В. Фуфаев, “Метод фазовых интегралов в одной задаче сингулярной теории возмущений”, Изв. РАН. Сер. матем., 81:2 (2017), 129–160  mathnet  crossref  mathscinet  zmath  adsnasa  elib; S. A. Stepin, V. V. Fufaev, “The phase-integral method in a problem of singular perturbation theory”, Izv. Math., 81:2 (2017), 359–390  crossref  isi
1
2
Следующая