14 citations to https://www.mathnet.ru/rus/mzm953
  1. Jan Muhammad, “Bounded absorbing sets for compressible non-Newtonian fluids”, J Eng Math, 149:1 (2024)  crossref
  2. Xu J., Yuan H., “Existence and Uniqueness of Global Strong Solutions For a Class of Non-Newtonian Fluids With Small Initial Energy and Vacuum”, C. R. Mec., 349:1 (2021), 29–41  crossref  isi
  3. Zhu H., Fang L., Muhammad J., Guo Zh., “Global Weak Solutions to a Vlasov-Fokker-Planck/Compressible Non-Newtonian Fluid System of Equations”, ZAMM-Z. Angew. Math. Mech., 100:4 (2020), e201900091  crossref  mathscinet  isi
  4. Guo Zh., Dong W., Liu J., “Large-Time Behavior of Solution to An Inflow Problem on the Half Space For a Class of Compressible Non-Newtonian Fluids”, Commun. Pure Appl. Anal, 18:4 (2019), 2133–2161  crossref  isi
  5. Pan J., Fang L., Guo Zh., “Stability of Boundary Layer to An Outflow Problem For a Compressible Non-Newtonian Fluid in the Half Space”, Acta Math. Sci., 39:1 (2019), 259–283  crossref  isi
  6. Fang L., Kong X., Liu J., “Weak Solution to a One-Dimensional Full Compressible Non-Newtonian Fluid”, Math. Meth. Appl. Sci., 41:9 (2018), 3441–3462  crossref  mathscinet  zmath  isi  scopus  scopus
  7. Fang L., Zhu H., Guo Zh., “Global Classical Solution to a One-Dimensional Compressible Non-Newtonian Fluid With Large Initial Data and Vacuum”, Nonlinear Anal.-Theory Methods Appl., 174 (2018), 189–208  crossref  mathscinet  zmath  isi  scopus  scopus
  8. Fang L., Guo Zh., “Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid”, Commun. Pure Appl. Anal, 16:1 (2017), 209–242  crossref  mathscinet  zmath  isi  scopus
  9. Barrett J.W., Lu Y., Suli E., “Existence of Large-Data Finite-Energy Global Weak Solutions to a Compressible Oldroyd-B Model”, Commun. Math. Sci., 15:5 (2017), 1265–1323  crossref  mathscinet  zmath  isi  scopus
  10. Fang L., Guo Zh., Wang Yu., “Local strong solutions to a compressible non-Newtonian fluid with density-dependent viscosity”, Math. Meth. Appl. Sci., 39:10 (2016), 2583–2601  crossref  mathscinet  zmath  isi  elib  scopus
1
2
Следующая