73 citations to https://www.mathnet.ru/rus/prl4
-
Artem Kryukov, Roman Abramov, Leonid E. Fedichkin, Alexander Alodjants, Alexey A. Melnikov, “Supervised graph classification for chiral quantum walks”, Phys. Rev. A, 105:2 (2022)
-
Jintao Yang, Junpeng Cao, Wen-Li Yang, “Dynamical learning of non-Markovian quantum dynamics”, Chinese Phys. B, 31:1 (2022), 010314
-
Francesco Ciccarello, Salvatore Lorenzo, Vittorio Giovannetti, G. Massimo Palma, “Quantum collision models: Open system dynamics from repeated interactions”, Physics Reports, 954 (2022), 1
-
James Nelson, Luuk Coopmans, Graham Kells, Stefano Sanvito, “Data-driven time propagation of quantum systems with neural networks”, Phys. Rev. B, 106:4 (2022)
-
I. A. Luchnikov, E. O. Kiktenko, M. A. Gavreev, H. Ouerdane, S. N. Filippov, A. K. Fedorov, “Probing non-Markovian quantum dynamics with data-driven analysis: Beyond “black-box” machine-learning models”, Phys. Rev. Research, 4 (2022), 43002–22
-
Stefano Martina, Stefano Gherardini, Lorenzo Buffoni, Filippo Caruso, “Noise fingerprints in quantum computers: Machine learning software tools”, Software Impacts, 12 (2022), 100260
-
Stefano Martina, Lorenzo Buffoni, Stefano Gherardini, Filippo Caruso, “Learning the noise fingerprint of quantum devices”, Quantum Mach. Intell., 4:1 (2022)
-
Yong Hu, Xiao-Yu Li, Qin-Sheng Zhu, Lecture Notes in Computer Science, 12736, Artificial Intelligence and Security, 2021, 132
-
Graeme D. Berk, Andrew J. P. Garner, Benjamin Yadin, Kavan Modi, Felix A. Pollock, “Resource theories of multi-time processes: A window into quantum non-Markovianity”, Quantum, 5 (2021), 435
-
Ilia A. Luchnikov, Alexander Ryzhov, Sergey N. Filippov, Henni Ouerdane, “QGOpt: Riemannian optimization for quantum technologies”, SciPost Phys., 10:3 (2021), 79–26