113 citations to https://www.mathnet.ru/rus/rcd114
  1. Satyam Panda, Souvik Chakraborty, Budhaditya Hazra, “A general framework for symplectic geometric integration for stochastically excited Hamiltonian systems on manifolds”, International Journal of Non-Linear Mechanics, 170 (2025), 105001  crossref
  2. Mariana Costa-Villegas, Luis C. García-Naranjo, “Affine Generalizations of the Nonholonomic Problem of a Convex Body Rolling without Slipping on the Plane”, Regul. Chaotic Dyn., 30:3 (2025), 354–381  mathnet  crossref
  3. R E Moctezuma, Fernanda H Flores, F Donado, Francisco J Sevilla, “Dry-active motion induced by resonant dynamics through an alternating magnetic field”, Phys. Scr., 100:5 (2025), 055231  crossref
  4. Elena N. Pivovarova, Alexander A. Kilin, “Bifurcation Analysis of the Dynamics of an Unbalanced Rubber Ellipsoid of Revolution”, Qual. Theory Dyn. Syst., 24:6 (2025)  crossref
  5. A. G. Agúndez, D. García-Vallejo, E. Freire, “Analytical and numerical stability analysis of a toroidal wheel with nonholonomic constraints”, Nonlinear Dyn, 112:4 (2024), 2453  crossref
  6. Alexander A. Kilin, Elena N. Pivovarova, “Bifurcation analysis of the problem of a “rubber” ellipsoid of revolution rolling on a plane”, Nonlinear Dyn, 2024  crossref
  7. Luis C. García-Naranjo, Rafael Ortega, Antonio J. Ureña, “Invariant Measures as Obstructions to Attractors in Dynamical Systems and Their Role in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 29:5 (2024), 751–763  mathnet  crossref
  8. Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — a Study of Integrable Cases”, Regul. Chaotic Dyn., 28:1 (2023), 62–77  mathnet  crossref  mathscinet
  9. Alexander A. Kilin, Elena N. Pivovarova, “Dynamics of an Unbalanced Disk with a Single Nonholonomic Constraint”, Regul. Chaotic Dyn., 28:1 (2023), 78–106  mathnet  crossref  mathscinet
  10. A. A. Kilin, T. B. Ivanova, “The Integrable Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint”, Rus. J. Nonlin. Dyn., 19:1 (2023), 3–17  mathnet  crossref  mathscinet
1
2
3
4
12
Следующая