22 citations to https://www.mathnet.ru/rus/rcd415
  1. Dai Q., Gebhard B., Bartsch T., “Periodic Solutions of N-Vortex Type Hamiltonian Systems Near the Domain Boundary”, SIAM J. Appl. Math., 78:2 (2018), 977–995  crossref  mathscinet  zmath  isi  scopus
  2. Leonid G. Kurakin, Irina V. Ostrovskaya, “On Stability of Thomson’s Vortex $N$-gon in the Geostrophic Model of the Point Bessel Vortices”, Regul. Chaotic Dyn., 22:7 (2017), 865–879  mathnet  crossref
  3. Sergei Gukov, “RG flows and bifurcations”, Nuclear Physics B, 919 (2017), 583  crossref
  4. A. A. Oshemkov, P. E. Ryabov, S. V. Sokolov, “Explicit determination of certain periodic motions of a generalized two-field gyrostat”, Russ. J. Math. Phys., 24:4 (2017), 517  crossref
  5. Thomas Bartsch, Björn Gebhard, “Global continua of periodic solutions of singular first-order Hamiltonian systems of N-vortex type”, Math. Ann., 369:1-2 (2017), 627  crossref
  6. А. В. Борисов, П. Е. Рябов, С. В. Соколов, “Бифуркационный анализ задачи о движении цилиндра и точечного вихря в идеальной жидкости”, Матем. заметки, 99:6 (2016), 848–854  mathnet  crossref  mathscinet  elib; A. V. Borisov, P. E. Ryabov, S. V. Sokolov, “Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid”, Math. Notes, 99:6 (2016), 834–839  crossref  isi
  7. Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65  mathnet  crossref  mathscinet  zmath
  8. Leonid G. Kurakin, Irina V. Ostrovskaya, Mikhail A. Sokolovskiy, “On the Stability of Discrete Tripole, Quadrupole, Thomson’ Vortex Triangle and Square in a Two-layer/Homogeneous Rotating Fluid”, Regul. Chaotic Dyn., 21:3 (2016), 291–334  mathnet  crossref  mathscinet
  9. П. Е. Рябов, А. Ю. Савушкин, “Фазовая топология волчка Ковалевской – Соколова”, Нелинейная динам., 11:2 (2015), 287–317  mathnet
  10. Mikhail P. Kharlamov, “Extensions of the Appelrot Classes for the Generalized Gyrostat in a Double Force Field”, Regul. Chaotic Dyn., 19:2 (2014), 226–244  mathnet  crossref  mathscinet  zmath
Предыдущая
1
2
3
Следующая