16 citations to https://www.mathnet.ru/rus/rcd474
  1. Hans-Bert Rademacher, “Simple closed geodesics in dimensions $\ge 3$”, J. Fixed Point Theory Appl., 26:1 (2024)  crossref
  2. Hans-Bert Rademacher, “Two short closed geodesics on a sphere of odd dimension”, Calc. Var., 62:3 (2023)  crossref
  3. Huagui Duan, Dong Xie, “Multiplicity of closed geodesics on bumpy Finsler manifolds with elliptic closed geodesics”, Journal of Functional Analysis, 284:8 (2023), 109861  crossref
  4. Duan H.G., Liu H., “The Non-Contractibility of Closed Geodesics on Finsler Double-Struck Capital Rpn”, Acta. Math. Sin.-English Ser., 38:1 (2022), 1–21  crossref  mathscinet  isi  scopus
  5. Hui Liu, Yuchen Wang, “Multiplicity of non-contractible closed geodesics on Finsler compact space forms”, Calc. Var., 61:6 (2022)  crossref
  6. Abreu M., Gutt J., Kang J., Macarini L., “Two Closed Orbits For Non-Degenerate Reeb Flows”, Math. Proc. Camb. Philos. Soc., 170:3 (2021), PII S0305004120000018, 625–660  crossref  mathscinet  isi  scopus
  7. Duan H., Long Y., Zhu Ch., “Index Iteration Theories For Periodic Orbits: Old and New”, Nonlinear Anal.-Theory Methods Appl., 201:SI (2020), 111999  crossref  mathscinet  zmath  isi  scopus
  8. Liu H., “The Optimal Lower Bound Estimation of the Number of Closed Geodesics on Finsler Compact Space Form S2N+1/Gamma”, Calc. Var. Partial Differ. Equ., 58:3 (2019), 107  crossref  mathscinet  isi  scopus
  9. Liu H., Long Y., Xiao Yu., “The Existence of Two Non-Contractible Closed Geodesics on Every Bumpy Finsler Compact Space Form”, Discret. Contin. Dyn. Syst., 38:8 (2018), 3803–3829  crossref  mathscinet  zmath  isi  scopus
  10. Hui Liu, “The Fadell–Rabinowitz index and multiplicity of non-contractible closed geodesics on Finsler RPn”, Journal of Differential Equations, 262:3 (2017), 2540  crossref
1
2
Следующая