83 citations to https://www.mathnet.ru/rus/rm1401
-
David Fernández Duque, Joost J. Joosten, Lecture Notes in Computer Science, 7318, How the World Computes, 2012, 212
-
Serény G., “How do we know that the Gödel sentence of a consistent theory is true?”, Philosophia Mathematica, 19:1 (2011), 47–73
-
Л. Д. Беклемишев, “Упрощенное доказательство теоремы об арифметической полноте для логики доказуемости $\mathbf{GLP}$”, Алгоритмические вопросы алгебры и логики, Сборник статей. К 80-летию со дня рождения академика Сергея Ивановича Адяна, Труды МИАН, 274, МАИК «Наука/Интерпериодика», М., 2011, 32–40
; L. D. Beklemishev, “A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$”, Proc. Steklov Inst. Math., 274 (2011), 25–33
-
Icard T., “A Topological Study of the Closed Fragment of GLP”, J Logic Comput, 21:4 (2011), 683–696
-
Beklemishev L., “Ordinal Completeness of Bimodal Provability Logic Glb”, Logic, Language, and Computation, Lecture Notes in Artificial Intelligence, 6618, eds. Bezhanishvili N., Lobner S., Schwabe K., Spada L., Springer-Verlag Berlin, 2011, 1–15
-
Mints G., “Countable Version of Omega-Rule”, Logic, Language, Information and Computation, Wollic 2011, Lecture Notes in Artificial Intelligence, 6642, eds. Beklemishev L., DeQueiroz R., Springer-Verlag Berlin, 2011, 201–209
-
Lev Beklemishev, Lecture Notes in Computer Science, 6618, Logic, Language, and Computation, 2011, 1
-
Grigori Mints, Lecture Notes in Computer Science, 6642, Logic, Language, Information and Computation, 2011, 201
-
G. Sereny, “How do We Know that the Godel Sentence of a Consistent Theory Is True?”, Philosophia Mathematica, 19:1 (2011), 47
-
Beklemishev L.D., “Kripke semantics for provability logic GLP”, Ann. Pure Appl. Logic, 161:6 (2010), 756–774