48 citations to https://www.mathnet.ru/rus/rm1687
  1. Fu L., Vial Ch., “A Motivic Global Torelli Theorem For Isogenous K3 Surfaces”, Adv. Math., 383 (2021), 107674  crossref  mathscinet  isi  scopus
  2. Addington N., Antieau B., Honigs K., Frei S., “Rational Points and Derived Equivalence”, Compos. Math., 157:5 (2021), 1036–1050  crossref  mathscinet  isi
  3. Laterveer R., “Motives and the Pfaffian-Grassmannian Equivalence”, J. Lond. Math. Soc.-Second Ser., 104:4 (2021), 1738–1764  crossref  mathscinet  isi  scopus
  4. Frei S., “Moduli Spaces of Sheaves on K3 Surfaces and Galois Representations”, Sel. Math.-New Ser., 26:1 (2020), UNSP 6  crossref  mathscinet  isi
  5. Hosono Sh., Takagi H., “Derived Categories of Artin-Mumford Double Solids”, Kyoto J. Math., 60:1 (2020), 107–177  crossref  mathscinet  isi
  6. Laterveer R., “On the Motive of Kapustka-Rampazzo'S Calabi-Yau Threefolds”, Hokkaido Math. J., 49:2 (2020), 227–245  crossref  mathscinet  isi  scopus
  7. Ito A., Miura M., Okawa Sh., Ueda K., “Derived Equivalence and Grothendieck Ring of Varieties: the Case of K3 Surfaces of Degree 12 and Abelian Varieties”, Sel. Math.-New Ser., 26:3 (2020), UNSP 38  crossref  mathscinet  isi  scopus
  8. Achter J.D., Casalaina-Martin S., Vial Ch., “Derived Equivalent Threefolds, Algebraic Representatives, and the Coniveau Filtration”, Math. Proc. Camb. Philos. Soc., 167:1 (2019), 123–131  crossref  mathscinet  isi
  9. Laterveer R., “On the Motive of Ito-Miura-Okawa-Ueda Calabi-Yau Threefolds”, Tokyo J. Math., 42:2 (2019), 399–404  crossref  mathscinet  isi
  10. Honigs K., “Derived Equivalence, Albanese Varieties, and the Zeta Functions of 3-Dimensional Varieties”, Proc. Amer. Math. Soc., 146:3 (2018), 1005–1013  crossref  mathscinet  zmath  isi  scopus
Предыдущая
1
2
3
4
5
Следующая