90 citations to https://www.mathnet.ru/rus/rm1982
  1. A. V. Bolsinov, A. T. Fomenko, Integrable Geodesic Flows on Two-Dimensional Surfaces, 2000, 287  crossref
  2. Е. А. Кудрявцева, “Реализация гладких функций на поверхностях в виде функций высоты”, Матем. сб., 190:3 (1999), 29–88  mathnet  crossref  mathscinet  zmath; E. A. Kudryavtseva, “Realization of smooth functions on surfaces as height functions”, Sb. Math., 190:3 (1999), 349–405  crossref  isi
  3. В. В. Козлов, Н. В. Денисова, “Полиномиальные интегралы геодезических потоков на двумерном торе”, Матем. сб., 185:12 (1994), 49–64  mathnet  mathscinet  zmath; V. V. Kozlov, N. V. Denisova, “Polynomial integrals of geodesic flows on a two-dimensional torus”, Russian Acad. Sci. Sb. Math., 83:2 (1995), 469–481  crossref  isi
  4. В. В. Козлов, Н. В. Денисова, “Симметрии и топология динамических систем с двумя степенями свободы”, Матем. сб., 184:9 (1993), 125–148  mathnet  mathscinet  zmath; V. V. Kozlov, N. V. Denisova, “Symmetries and the topology of dynamical systems with two degrees of freedom”, Russian Acad. Sci. Sb. Math., 80:1 (1995), 105–124  crossref  isi
  5. Е. Н. Селиванова, “Классификация геодезических потоков лиувиллевых метрик на двумерном торе с точностью до топологической эквивалентности”, Матем. сб., 183:4 (1992), 69–86  mathnet  mathscinet  zmath  adsnasa; E. N. Selivanova, “Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 491–505  crossref  isi
  6. А. Т. Фоменко, “Топологический инвариант, грубо классифицирующий интегрируемые строго невырожденные гамильтонианы на четырехмерных симплектических многообразиях”, Функц. анализ и его прил., 25:4 (1991), 23–35  mathnet  mathscinet  zmath; A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272  crossref  isi
  7. А. Т. Фоменко, “Теория бордизмов интегрируемых гамильтоновых невырожденных систем с двумя степенями свободы. Новый топологический инвариант многомерных интегрируемых систем”, Изв. АН СССР. Сер. матем., 55:4 (1991), 747–779  mathnet  mathscinet  zmath  adsnasa; A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759  crossref  isi
  8. A.T. FOMENKO, Mechanics, Analysis and Geometry: 200 Years After Lagrange, 1991, 127  crossref
  9. A. T. Fomenko, Mathematical Sciences Research Institute Publications, 22, The Geometry of Hamiltonian Systems, 1991, 131  crossref
  10. А. В. Болсинов, С. В. Матвеев, А. Т. Фоменко, “Топологическая классификация интегрируемых гамильтоновых систем с двумя степенями свободы. Список систем малой сложности”, УМН, 45:2(272) (1990), 49–77  mathnet  mathscinet  zmath  adsnasa; A. V. Bolsinov, S. V. Matveev, A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94  crossref  isi
Предыдущая
1
2
3
4
5
6
7
8
9