255 citations to https://www.mathnet.ru/rus/rm2823
-
М. В. Шамолин, “Инварианты однородных динамических систем произвольного нечетного порядка с диссипацией. II. Системы пятого порядка”, Материалы Воронежской международной весенней математической школы «Современные методы краевых задач. Понтрягинские чтения—XXXV», Воронеж, 26-30 апреля 2024 г. Часть 3, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 237, ВИНИТИ РАН, M., 2024, 49–75
-
Vassil M. Vassilev, Svetoslav G. Nikolov, “First and Second Integrals of Hopf–Langford-Type Systems”, Axioms, 14:1 (2024), 8
-
Philip Arathoon, Marine Fontaine, “Real Forms of Holomorphic Hamiltonian Systems”, SIGMA, 20 (2024), 114, 24 pp.
-
И. А. Тайманов, “Центральные расширения алгебр Ли, динамические системы и симплектические нильмногообразия”, Математические аспекты механики, Сборник статей. К 60-летию академика Дмитрия Валерьевича Трещева и 70-летию члена-корреспондента РАН Сергея Владимировича Болотина, Труды МИАН, 327, МИАН, М., 2024, 317–329
; I. A. Taimanov, “Central Extensions of Lie Algebras, Dynamical Systems, and Symplectic Nilmanifolds”, Proc. Steklov Inst. Math., 327 (2024), 300–312
-
М. В. Шамолин, “Инвариантные формы объема геодезических, потенциальных и диссипативных систем на касательном расслоении четырехмерного многообразия”, Докл. РАН. Матем., информ., проц. упр., 509 (2023), 69–76
; M. V. Shamolin, “Invariant volume forms of geodesic, potential, and dissipative systems on a tangent bundle of a four-dimensional manifold”, Dokl. Math., 107:1 (2023), 57–63
-
М. В. Шамолин, “Инвариантные формы геодезических, потенциальных и диссипативных систем на касательном расслоении конечномерного многообразия”, Докл. РАН. Матем., информ., проц. упр., 512 (2023), 10–17
; M. V. Shamolin, “Invariant forms of geodesic, potential, and dissipative systems on tangent bundles of finite-dimensional manifolds”, Dokl. Math., 108:1 (2023), 248–255
-
М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. I. Системы на касательных расслоениях двумерных многообразий”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 227, ВИНИТИ РАН, М., 2023, 100–128
-
М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. II. Системы на касательных расслоениях трехмерных многообразий”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 228, ВИНИТИ РАН, М., 2023, 92–118
-
М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. III. Системы на касательных расслоениях четырехмерных многообразий”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 3, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 229, ВИНИТИ РАН, М., 2023, 90–119
-
М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. IV. Системы на касательных расслоениях $n$-мерных многообразий”, Материалы Воронежской международной весенней математической школы «Современные методы краевых задач. Понтрягинские чтения—XXXIV», Воронеж, 3-9 мая 2023 г. Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 230, ВИНИТИ РАН, М., 2023, 96–130