64 citations to https://www.mathnet.ru/rus/rm333
-
А. Д. Агальцов, Р. Г. Новиков, “Примеры решения обратной задачи рассеяния и уравнений иерархии Веселова–Новикова по данным рассеяния точечных потенциалов”, УМН, 74:3(447) (2019), 3–16
; A. D. Agaltsov, R. G. Novikov, “Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials”, Russian Math. Surveys, 74:3 (2019), 373–386
-
Agaltsov A.D., Hohage T., Novikov R.G., “An Iterative Approach to Monochromatic Phaseless Inverse Scattering”, Inverse Probl., 35:2 (2019), 024001
-
Kazeykina A., Munoz C., “Dispersive Estimates For Rational Symbols and Local Well-Posedness of the Nonzero Energy Nv Equation. II”, J. Differ. Equ., 264:7 (2018), 4822–4888
-
Music M., Perry P., “Global Solutions For the Zero-Energy Novikov-Veselov Equation By Inverse Scattering”, Nonlinearity, 31:7 (2018), 3413–3440
-
Tamminen J., Tarvainen T., Siltanen S., “The D-Bar Method for Diffuse Optical Tomography: A Computational Study”, Exp. Math., 26:2 (2017), 225–240
-
П. Г. Гриневич, С. П. Новиков, “Сингулярные солитоны и спектральная мероморфность”, УМН, 72:6(438) (2017), 113–138
; P. G. Grinevich, S. P. Novikov, “Singular solitons and spectral meromorphy”, Russian Math. Surveys, 72:6 (2017), 1083–1107
-
Lakshtanov E., Vainberg B., “Recovery of l-P-Potential in the Plane”, J. Inverse Ill-Posed Probl., 25:5 (2017), 633–651
-
Kazeykina A., Klein Ch., “Numerical Study of Blow-Up and Stability of Line Solitons For the Novikov-Veselov Equation”, Nonlinearity, 30:7 (2017), 2566–2591
-
Kazeykina A., Munoz C., “Dispersive Estimates For Rational Symbols and Local Well-Posedness of the Nonzero Energy Nv Equation”, 270, no. 5, 2016, 1744–1791
-
А. Г. Кудрявцев, “Нелокальное преобразование Дарбу двумерного стационарного уравнения Шредингера и его связь с преобразованием Мутара”, ТМФ, 187:1 (2016), 12–20
; A. G. Kudryavtsev, “Nonlocal Darboux transformation of the two-dimensional stationary
Schrödinger equation and its relation to the Moutard transformation”, Theoret. and Math. Phys., 187:1 (2016), 455–462