202 citations to https://www.mathnet.ru/rus/rm3879
  1. А. Е. Миронов, “Об одном кольце коммутирующих дифференциальных операторов ранга два, отвечающем кривой рода два”, Матем. сб., 195:5 (2004), 103–114  mathnet  crossref  mathscinet  zmath; A. E. Mironov, “A ring of commuting differential operators of rank 2 corresponding to a curve of genus 2”, Sb. Math., 195:5 (2004), 711–722  crossref  isi
  2. Adler, VE, “Q(4): Integrable master equation related to an elliptic curve”, International Mathematics Research Notices, 2004, no. 47, 2523  crossref  mathscinet  zmath  isi  elib
  3. J Ram rez, M S Bruz n, C Muriel, M L Gandarias, “The Schwarzian Korteweg de Vries equation in (2   1) dimensions”, J Phys A Math Gen, 36:5 (2003), 1467  crossref  mathscinet  zmath  adsnasa  isi  elib
  4. И. М. Кричевер, С. П. Новиков, “Двумеризованная цепочка Тоды, коммутирующие разностные операторы и голоморфные расслоения”, УМН, 58:3(351) (2003), 51–88  mathnet  crossref  mathscinet  zmath  adsnasa; I. M. Krichever, S. P. Novikov, “Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles”, Russian Math. Surveys, 58:3 (2003), 473–510  crossref  isi  elib
  5. М. С. Брузон, М. Л. Гандариас, С. Мурьель, Х. Рамирес, Ф. Р. Ромеро, “Решения вида бегущей волны для уравнений Шварца–Кортевега–де Фриза в размерности $2+1$ и Абловитца–Каупа–Ньюэлла–Сегура, получаемые посредством редукций симметрий”, ТМФ, 137:1 (2003), 27–39  mathnet  crossref  mathscinet; M. S. Bruzón, M. L. Gandarias, C. Muriel, J. Ramíres, F. R. Romero, “Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions”, Theoret. and Math. Phys., 137:1 (2003), 1378–1389  crossref  isi  elib
  6. Sergei Igonin, Ruud Martini, “Prolongation structure of the Krichever Novikov equation”, J Phys A Math Gen, 35:46 (2002), 9801  crossref  mathscinet  zmath  isi  elib
  7. I. M. Krichever, “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”, Mosc. Math. J., 2:4 (2002), 717–752  mathnet  crossref  mathscinet  zmath  elib
  8. Nijhoff, FW, “Lax pair for the Adler (lattice Krichever-Novikov) system”, Physics Letters A, 297:1–2 (2002), 49  crossref  mathscinet  zmath  adsnasa  isi  elib
  9. Bobenko, AI, “Integrable systems on quad-graphs”, International Mathematics Research Notices, 2002, no. 11, 573  crossref  mathscinet  zmath  isi  elib
  10. A Dimakis, F Müller-Hoissen, J Phys A Math Gen, 34:43 (2001), 9163  crossref  mathscinet  zmath  adsnasa  isi
Предыдущая
1
10
11
12
13
14
15
16
21
Следующая