182 citations to https://www.mathnet.ru/rus/rm5111
  1. Stefan C. Mancas, S. Roy Choudhury, “Traveling wavetrains in the complex cubic–quintic Ginzburg–Landau equation”, Chaos, Solitons & Fractals, 28:3 (2006), 834  crossref
  2. Pei Yu, Songhui Zhu, “Computation of the normal forms for general M-DOF systems using multiple time scales. Part I: autonomous systems”, Communications in Nonlinear Science and Numerical Simulation, 10:8 (2005), 869  crossref
  3. J. Palis, “A global perspective for non-conservative dynamics”, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 22:4 (2005), 485  crossref
  4. PHILIP HOLMES, “NINETY PLUS THIRTY YEARS OF NONLINEAR DYNAMICS: LESS IS MORE AND MORE IS DIFFERENT”, Int. J. Bifurcation Chaos, 15:09 (2005), 2703  crossref
  5. Palis J., “A Global Perspective for Non-Conservative Dynamics”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 22:4 (2005), 485–507  crossref  isi
  6. Arnold's Problems, 2005, 181  crossref
  7. Л. Г. Куракин, В. И. Юдович, “О бифуркациях равновесий при разрушении косимметрии динамической системы”, Сиб. матем. журн., 45:2 (2004), 356–374  mathnet  mathscinet  zmath; L. G. Kurakin, V. I. Yudovich, “On equilibrium bifurcations in the cosymmetry collapse of a dynamical system”, Siberian Math. J., 45:2 (2004), 294–310  crossref  isi  elib
  8. Yuri A. Kuznetsov, Applied Mathematical Sciences, 112, Elements of Applied Bifurcation Theory, 2004, 295  crossref
  9. Yuri A. Kuznetsov, Applied Mathematical Sciences, 112, Elements of Applied Bifurcation Theory, 2004, 39  crossref
  10. P. Yu, A.Y.T. Leung, “A perturbation method for computing the simplest normal forms of dynamical systems”, Journal of Sound and Vibration, 261:1 (2003), 123  crossref
Предыдущая
1
3
4
5
6
7
8
9
19
Следующая