13 citations to https://www.mathnet.ru/rus/sm1015
-
Sergei Agapov, “Local high-degree polynomial integrals of geodesic flows and the generalized hodograph method”, Journal of Geometry and Physics, 2025, 105629
-
JOSCHA HENHEIK, “Deformational rigidity of integrable metrics on the torus”, Ergod. Th. Dynam. Sys., 2024, 1
-
С. В. Агапов, Ж. Ш. Фахриддинов, “О некоторых свойствах полугамильтоновых систем, возникающих в задаче об интегрируемых геодезических потоках на двумерном торе”, Сиб. матем. журн., 64:5 (2023), 881–894
; S. V. Agapov, Zh. Sh. Fakhriddinov, “On some properties of semi-Hamiltonian systems arising in the problem of integrable geodesic flows on the two-dimensional torus”, Siberian Math. J., 64:5 (2023), 1063–1075
-
Agapov S. Valyuzhenich A., “Polynomial Integrals of Magnetic Geodesic Flows on the 2-Torus on Several Energy Levels”, Discret. Contin. Dyn. Syst., 39:11 (2019), 6565–6583
-
В. С. Кальницкий, “Симметрии плоской алгебры косимволов дифференциальных операторов”, Вопросы теории представлений алгебр и групп. 29, Зап. научн. сем. ПОМИ, 443, ПОМИ, СПб., 2016, 95–105
; V. S. Kalnitsky, “Symmetries of a flat cosymbol algebra of the differential operators”, J. Math. Sci. (N. Y.), 222:4 (2017), 429–436
-
В. В. Тен, “Полиномиальные первые интегралы систем с гироскопическими силами”, Матем. заметки, 68:1 (2000), 151–153
; V. V. Ten, “Polynomial first integrals for systems with gyroscopic forces”, Math. Notes, 68:1 (2000), 135–138
-
Denisova N., “Polynomial Fields of the Third Degree Symmetries of Geodesic Flows on a Two-Dimensional Torus”, Vestn. Mosk. Univ. Seriya 1 Mat. Mekhanika, 1998, no. 2, 48–53
-
Н. В. Денисова, “О структуре полей симметрий геодезических потоков на двумерном торе”, Матем. сб., 188:7 (1997), 107–122
; N. V. Denisova, “The structure of infinitesimal symmetries of geodesic flows on a two-dimensional torus”, Sb. Math., 188:7 (1997), 1055–1069
-
Anikeev P., “On the Second Degree Fields of Symmetry for an Impulse of Geodesic Flows on the Two-Dimensional Sphere”, Vestn. Mosk. Univ. Seriya 1 Mat. Mekhanika, 1997, no. 4, 29–32
-
Kozlov V., “Symmetries and Regular Behavior of Hamiltonian Systems”, Chaos, 6:1 (1996), 1–5